• 제목/요약/키워드: COD(Chemical Oxygen Demand)

검색결과 516건 처리시간 0.024초

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

汚濁河川水의 地球化學的인 硏究 (第 II 報) 서울市內 河川水 및 工場排水의 化學的 酸素要求量 (Geochemical Investigations of Contaminated River Waters Part II-Chemical Oxygen Demand of River Water and Industrial Waste Water in Seoul)

  • 이용근
    • 대한화학회지
    • /
    • 제14권1호
    • /
    • pp.5-12
    • /
    • 1970
  • River water and industrial waste water in Seoul were studied by means of chemical oxygen demand(COD) as an indicator for water pollution, from August 1967 to July 1968. Rivers flowing through residential and industrial areas are badly contaminated and COD of water in Han River increases as it progresses to downstream. Seasonal variation of COD showed that higher value of COD was observed in spring and lower in autumn. It is clear that the seasonal variation of COD is influenced by the precipitation. Close relationship was found between COD and population density. The lowest COD curve obtained by plotting COD values against population density and show that the curve slopes upward. The discontinuation of the curve was shown at the population density of 14,000/km$^2$; an increase in COD was acute over the population density of 14,000/km$^2$.

  • PDF

더블 빔 구조, 다파장 분석을 적용한 연속식 실시간 COD 측정 센서 개발 (Development of Continuous Real-time COD Measurement Sensor with Double Beam and Multiple Wavelength Analysis)

  • 이준석;신대정;형기우;류인재
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.272-277
    • /
    • 2014
  • At present, the index of chemical oxygen demand (COD) is widely used as an indicator of organic water pollution with biochemical oxygen demand (BOD). But, traditional COD measurement method are not only with various chemical reagents exhausted, but also long time consumed, the operation procedure and the modification are much professional. This paper reported a novel COD measurement system using double-beam and multiple wavelength analysis UV-VIS spectrometries. It consists of pulsed xenon lamp, two-way optical fiber, optical switch, spectrometer and main processor. Proposed COD measurement system obtains any spectral information of water sample (KHP standard sample and two river water and wastewater) and reference sample (distilled water) in the range of 200~520 nm, corresponding to the COD concentration from 0 to 300 mg/L through calculating the UV absorbance. The system show improved precision and can work continuously fast at time interval about 25 seconds.

한국 연안수에서 총유기탄소 및 화학적 산소요구량 분포 특성 (Characteristics of Total Organic Carbon and Chemical Oxygen Demand in the Coastal Waters of Korea)

  • 손주원;박용철;이효진
    • 한국해양학회지:바다
    • /
    • 제8권3호
    • /
    • pp.317-326
    • /
    • 2003
  • 연안수에서 유기 화합물의 정량적인 특성을 파악하기 위하여 인천 연안 지역, 포항의 영일만을 포함한 형산강 지역 그리고 부산 연안 지역에서 시료를 채취하였다. 또한 강화도와 세어도에서 고정관측도 하였다. 연안수의 총유기탄소(TOC)와 염분과의 상관 관계 및 화학적 산소요구량(COD)과 염분과의 상관 관계를 이용하여 추정한 하천에서 연안역으로 유입되는 총유기탄소의 riverine end-member 값은 5.32 mg C/l, 화학적 산소요구량의 riverine end-member 값은 8.87 mg $O_2$/1로 나타났다 고온 촉매 산화(HTCO)방법을 이용하여 측정한 총유기탄소와 화학적 산소요구량을 비교한 결과 화학적 산소요구량은 총유기탄소의 약 47%를 반영하는 것으로 나타났다. 총유기탄소와 화학적 산소요구량에 대한 상관 관계식은 COD(mgO$_2$,/1)=0.61$\times$TOC(mg C/l)-0.03,($R^2$=0.66)으로 이 관계식을 이용하면 기존에 보고된 화학적 산소요구량으로 총유기탄소를 추정하는데 활용할 수 있을 것으로 판단된다.

전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발 (Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit)

  • 윤석민;최창호;박병선;진길주;정봉근;현문식;박종만;이승선;이동희;김형주
    • 대한환경공학회지
    • /
    • 제28권4호
    • /
    • pp.453-458
    • /
    • 2006
  • 수질의 빠르고 정확한 COD(Chemical Oxygen Demand)의 측정을 위하여 전극표면 연마장치가 부착된 전기화학적 측정 센서시스템을 연구하였다. 수질 내 유기물에 대한 Cu의 산화작용이 COD 측정의 기본원리로 이용되었으며, 3전극계를 적용한 전기화학 셀을 COD 측정시스템에 적용하였다. 장시간의 COD 측정에 대비하여, Cu전극의 내구성과 안정성을 유지시키기 위해 회전되는 연마석을 이용한 자동연마장치를 부착하였다. 유기물을 함유한 인공시료 및 실제 현장시료를 이용하여 COD 변화에 대한 측정가능성을 실험하였고, $COD_{Mn}$ 수치와 COD 측정용 센서를 이용하여 측정한 Coulombic yield와의 사이에 높은 상관관계($r^2=0.93$)를 가지며 이 측정값을 EOD(electrochemical oxygen demand)로 표현할 수 있다는 것을 확인하였다. 이러한 측정 결과를 토대로 이 시스템이 폐수처리장 및 하수에 연속 COD 측정 장치로 적용할 수 있는 가능성이 있을 것으로 확인하였다.

마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토 (A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea)

  • 박미옥;이용우;조성아;김혜미;박준건;김성길;김성수;이석모
    • 한국해양학회지:바다
    • /
    • 제26권2호
    • /
    • pp.82-95
    • /
    • 2021
  • 마산만에서 유기물의 시공간적 분포 특성을 살펴보기 위해 2015년 월별로 총 13개 정점에서 화학적산소요구량(COD)과 총유기탄소(TOC) 농도를 조사하였다. COD와 TOC 농도는 오염부하량이 증가하는 6~8월에 상대적으로 높았고, 저층보다 표층에서 약 2배 높았다. COD와 TOC 농도는 마산만의 내측 정점에서 다른 정점들에 비해 약 2배 이상 높았다. 2015년 마산만 표층에서 이론적산소 요구량(TOD)을 기준으로 COD의 산화 효율성을 추정한 결과, COD의 산화 효율은 약 23%로 낮은 수준이었다. 마산만에서 COD 측정시 낮은 산화 효율은 만 내에 분포하는 유기물 양이 과소평가 될 가능성이 있어, 유기물의 정확한 정량분석을 위해서는 COD와 TOC 분석의 병행 조사가 필요할 것으로 판단된다.

Impact of Current Density, Operating Time and pH of Textile Wastewater Treatment by Electrocoagulation Process

  • Hossain, Md. Milon;Mahmud, Md. Iqbal;Parvez, Md. Shohan;Cho, Haeng Muk
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.157-161
    • /
    • 2013
  • Treatment of textile wastewater by the electrocoagulation (EC) process is being investigated by this experimental study. The objective of this experiment is to observe the efficiency of the EC process in removing chemical oxygen demand (COD) and turbidity. In this experiment an iron electrode is used in the EC process, and different working parameters such as pH, current density and operating time were studied in an attempt to achieve a higher removal capacity. The results show that the maximum COD removal occurred at neutral pH at operating time 30 min. COD and turbidity removal reaches at maximum, with optimum consumption of electrodes, between current density 85-95 $A/m^2$, and only trace amounts of metals were determined in the EC treated effluent.

Comparing geometric parameters of a hydrodynamic cavitation process treating pesticide effluent

  • Randhavane, Shrikant B.
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.318-323
    • /
    • 2019
  • Paper focuses on comparison between two different orifice plate configurations (plate number 1 and plate number 2) used as cavitating device in the hydrodynamic cavitation reactor for improving pollutant removal efficiencies. Effect of four different parameters such as hydraulic characteristics (in terms of range of flow rates, orifice velocities, cavitation number at different inlet pressures); cavitation number (in range of 5.76-0.35 for plate number 1 and 1.20-0.35 for plate number 2); inlet pressure (2-8 bars) and reaction time (0 to 60 min) in terms of chemical oxygen demand (COD) removal and chlorpyrifos degradation has been studied and compared. Optimum inlet pressure of 5 bars exists for degradation of pollutants for both the plates. It is found that geometry of orifice plate plays important role in removal efficiencies of pollutant. Results obtained confirmed that orifice plate 1 with configuration of 1.5 mm 17 holes; cavitational number of 1.54 performed better with around 60% COD and 98% chlorpyrifos removal as compared to orifice plate 2 having configuration of 2 mm single hole; cavitational number of 0.53 with 40% COD and 96% chlorpyrifos in 2 h duration time.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.