• Title/Summary/Keyword: CO-shifter

Search Result 19, Processing Time 0.024 seconds

Power module stray inductance extraction: Theoretical and experimental analysis

  • Jung, Dong Yun;Jang, Hyun Gyu;Cho, Doohyung;Kwon, Sungkyu;Won, Jong Il;Lee, Seong Hyun;Park, Kun Sik;Lim, Jong-Won;Bae, Joung Hwan;Choi, Yun Hwa
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.891-899
    • /
    • 2021
  • We propose a stray inductance extraction method on power modules of the few-kilovolts/several-hundred-amperes class using only low voltages and low currents. The method incorporates a double-pulse generator, a level shifter, a switching device, and a load inductor. The conventional approach generally requires a high voltage of more than half the power module's rated voltage and a high current of around half the rated current. In contrast, the proposed method requires a low voltage and low current environment regardless of the power module's rated voltage because the module is measured in a turn-off state. Both theoretical and experimental results are provided. A physical circuit board was fabricated, and the method was applied to three commercial power modules with EconoDUAL3 cases. The obtained stray inductance values differed from the manufacturer-provided values by less than 1.65 nH, thus demonstrating the method's accuracy. The greatest advantage of the proposed approach is that high voltages or high currents are not required.

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network (UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기)

  • Jung, Won-jae;Hong, Nam-pyo;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1566-1573
    • /
    • 2016
  • This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

Design of a Ultra Miniaturized Voltage Tuned Oscillator Using LTCC Artificial Dielectric Reson (LTCC 의사 유전체 공진기를 이용한 초소형 전압제어발진기 설계)

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.613-623
    • /
    • 2012
  • In this paper, we present an ultra miniaturized voltage tuned oscillator, with HMIC-type amplifier and phase shifter, using LTCC artificial dielectric resonator. ADR which consists of periodic conductor patterns and stacked layers has a smaller size than a dielectric resonator. The design specification of ADR is obtained from the design goal of oscillator. The structure of the ADR with a stacked circular disk type is chosen. The resonance characteristic, physical dimension and stack number are analyzed. For miniaturization of ADRO, the ADR is internally implemented at the upper part of the LTCC substrate and the other circuits, which are amplifier and phase shifter are integrated at the bottom side respectively. The fabricated ADRO has ultra small size of $13{\times}13{\times}3mm^3$ and is a SMT type. The designed ADRO satisfies the open-loop oscillation condition at the design frequency. As a results, the oscillation frequency range is 2.025~2.108 GHz at a tuning voltage of 0~5 V. The phase noise is $-109{\pm}4$ dBc/Hz at 100 kHz offset frequency and the power is $6.8{\pm}0.2$ dBm. The power frequency tuning normalized figure of merit is -30.88 dB.

T/R Module Development for X-Band Active Phased-Array Radar (능동 위상 배열 레이더용 X-대역 T/R 모듈 개발)

  • Kim, Dong-Yoon;Chong, Min-Kil;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi;Baik, Seung-Hun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1243-1251
    • /
    • 2009
  • This paper presents design and test results of X-Band Transmit/Receive(T/R) module for active phased-array radar. Active phased array radars typically require solid state T/R modules with high output power, low noise figure, high Third Order Intercept(TOI), and sufficient gain in both transmit and receive. The output power of the module is 9 watts over a wide bandwidth. The noise figure is as low as 2.8 dB. Phase and amplitude are controlled by the 6-bit phase shifter and 5-bit attenuator, respectively. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. The module incorporates a compact digital interface, requires only three supply voltages.

A Chip Design of Body Composition Analyzer (체성분 분석용 칩 설계)

  • Bae, Sung-Hoon;Moon, Byoung-Sam;Lim, Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.26-34
    • /
    • 2007
  • This Paper describes a chip design technique for body composition analyzer based on the BIA (Bioelectrical Impedance Analysis) method. All the functions of signal forcing circuits to the body, signal detecting circuits from the body, Micom, SRAM and EEPROMS are integrated in one chip. Especially, multi-frequency detecting method can be applied with selective band pass filter (BPF), which is designed in weak inversion region for low power consumption. In addition new full wave rectifier (FWR) is also proposed with differential difference amplifier (DDA) for high performance (small die area low power consumption, rail-to-rail output swing). The prototype chip is implemented with 0.35um CMOS technology and shows the power dissipation of 6 mW at the supply voltage of 3.3V. The die area of prototype chip is $5mm\times5mm$.

A CMOS Bandgap Reference Voltage/Current Bias Generator And Its Responses for Temperature and Radiation (CMOS Bandgap 기준 전압/전류 발생기 및 방사능 응답)

  • Lim, Gyu-Ho;Yu, Seong-Han;Heo, Jin-Seok;Kim, Kwang-Hyun;Jeon, Sung-Chae;Huh, Young;Kim, Young-Hee;Cho, Gyu-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1093-1096
    • /
    • 2003
  • 본 논문에서는, CMOS APS Image Sensor 내에 포함되어 회로의 면적을 줄인 새롭게 제안된 CMOS Bandgap Reference Bias Generator (BGR)를 온도 및 방사능에 대한 응답을 실험하였다. 제안된 BGR 회로의 설계 목표는 V/sub DD/는 2.5V이상이고, V/sub ref/는 0.75V ± 0.5mV 마진을 가지게 하는 것이다. 제안된 BGR회로는 Level Shifter를 갖는 Differential OP-amp단과 Feedback-Loop를 가지는 Cascode Current Mirror를 사용하여 저전압에서도 동작을 가능하게 하였으며, 높은 출력저항 특성을 가지도록 하였다. 제안된 BGR회로는 하이닉스 0.18㎛ ( triple well two-poly five-metal ) CMOS 공정을 이용하여 Test Chip을 제작하였다. 온도의 변화와 Co-60 노출조건 하에서 Total ionization dose (TID) effect된 BGR회로의 V/sub ref/를 측정하여, 이를 평가하였다. 온도에 대한 반응은, 25℃ 일 때의 V/sub ref/에 대해, 각각 45 ℃에서 0.128%. 70℃에서 0.768% 변화하였다. 그리고 온도가 25℃일 때 50krad와 100krad의 방사능을 조사 하였을 경우, V/sub ref/는 각각 2.466%, 그리고 4.612% 변화하였다.

  • PDF

4 Way Quadrature Divider Using Metamaterial Transmission Lines (Metamaterial 전송선로를 이용한 4출력 90° 위상 분배기)

  • Cho, Hak-Rae;Kim, Jeong-pyo;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • We propose a wideband 4-way quadrature divider for global navigation satellite system (GNSS). The proposed divider consists of one balun and two 2-way quadrature dividers. In the balun, the input power is divided by a wilkinson divider and the out of phase characteristic is achieved by ${\pm}90^{\circ}$ metamaterial transmission line phase shifters applied two output ports. The structures of two quadrature dividers is similar to that of the balun, but the phase shifters of two output ports are exchanged by ${\pm}90^{\circ}$ metamaterial transmission line. Metamaterial transmission lines are designed by using five LC loaded transmission line (LCL-TL) unit cells. The fabricated 4 way quadrature divider has the phase characteristic of $90^{\circ}{\pm}10^{\circ}$ in 1.165 - 1.61 GHz.

A Study on Efficiency Improvement of X-Band Power Amplifier Using Harmonic Control Circuit (고조파 제어 회로를 이용한 X-대역 전력 증폭기의 효율 개선에 관한 연구)

  • Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Dong-Yoon;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.987-994
    • /
    • 2010
  • In this paper, a simple and effective active load-pull method is proposed, and the method to improve the efficiency of X-band power amplifier using harmonic control circuit is presented. The proposed active load-pull system mainly consists of directional coupler, phase shifter, short circuit, and power amplifier, and allows a user to access reflection coefficients near the edge of the Smith chart($\Gamma$=1) easily. The device used in this paper is Mitsubishi's GaAs FET MGF1801, and the operating frequency of the power amplifier is 9 GHz, The amplifier had output power of 21.65 dBm and drain efficiency of 24.9 % at class-A, and had output power of 21.46 dBm and drain efficiency of 53.3 % at class-AB. Harmonic control circuit is designed only second and third harmonic components because of the bandwidth limitation of the microwave components. The drain efficiency is improved as much as 6.4 % compared with class-AB power amplifier.

A Design and Fabrication of the X-Band Transmit/Receive Module for Active Phased Array SAR Antennas (능동 위상 배열 SAR 안테나를 위한 X-대역 송수신 모듈의 설계 및 제작)

  • Chong, Min-Kil;Kim, Sang-Keun;Na, Hyung-Gi;Lee, Jong-Hwan;Yi, Dong-Woo;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1050-1060
    • /
    • 2009
  • In this paper, a X-Band T/R-module for SAR(Synthetic Aperture Radar) systems based on active phased array antennas is designed and fabricated. The T/R modules have a and width of more than 800 MHz centered at X-Band and support dual, switched polarizations. The output power of the module is 7 watts over a wide bandwidth. The noise figure is as low as 3.9 dB. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit digital attenuator, respectively. Further the fabricated T/R module has est and calibration port with directional coupler and power divider. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. RMS gain error is less than 0.8 dB max. in Rx mode, and RMS phase error is less than $4^{\circ}$ max. in Rx/Tx phase under all operating frequency band, or the T/R module meet the required electrical performance m test. This structure an be applied to active phase array SAR Antennas.