DOI QR코드

DOI QR Code

4 Way Quadrature Divider Using Metamaterial Transmission Lines

Metamaterial 전송선로를 이용한 4출력 90° 위상 분배기

  • Received : 2018.02.19
  • Accepted : 2018.04.26
  • Published : 2018.04.30

Abstract

We propose a wideband 4-way quadrature divider for global navigation satellite system (GNSS). The proposed divider consists of one balun and two 2-way quadrature dividers. In the balun, the input power is divided by a wilkinson divider and the out of phase characteristic is achieved by ${\pm}90^{\circ}$ metamaterial transmission line phase shifters applied two output ports. The structures of two quadrature dividers is similar to that of the balun, but the phase shifters of two output ports are exchanged by ${\pm}90^{\circ}$ metamaterial transmission line. Metamaterial transmission lines are designed by using five LC loaded transmission line (LCL-TL) unit cells. The fabricated 4 way quadrature divider has the phase characteristic of $90^{\circ}{\pm}10^{\circ}$ in 1.165 - 1.61 GHz.

본 논문에서는 $90^{\circ}$ 위상차를 갖는 GNSS (global navigation satellite system)용 광대역 4출력 분배 회로를 제안한다. 제안하는 분배회로는 1개의 발룬과 2개의 $90^{\circ}$ 위상 분배기로 이루어진다. 발룬은 wilkinson 분배기와 두 출력단에 각각 ${\pm}90^{\circ}$ metamaterial 전송선 위상 천이기를 이용하여 구현된다. $90^{\circ}$ 위상 분배기의 경우, 발룬과 구조는 같으나, 두 개의 출력단에 각각 ${\pm}45^{\circ}$ metamaterial 전송선 위상천이기가 적용된다. Metamaterial 전송선은 LCL-TL (LC loaded transmission line) 단위 셀을 이용하여 구현하였으며, 요구되는 위상 천이 특성을 구현하기 위해 5셀을 갖도록 하였다. 구현된 4출력 $90^{\circ}$ 위상 분배기는 GNSS 대역인 1.165 -1.61 GHz의 넓은 대역에서 각 포트별 $90^{\circ}{\pm}10^{\circ}$의 위상차를 갖는다.

Keywords

References

  1. S. Lim, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microwave Magazine, Vol. 5, No. 3, pp. 34-50, Sep. 2004.
  2. C. Caolz and T. Itoh, Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications, Wiley-IEEE Press, 2005.
  3. G. V. Elftheriads, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, pp. 2702-2712, Dec. 2002. https://doi.org/10.1109/TMTT.2002.805197
  4. M. A. Antoniades and G. V. Eleftheriades, "Compact linear lead/lag metamaterials phase shifters for broad band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, pp. 103-106, 2003. https://doi.org/10.1109/LAWP.2003.815280
  5. J. P. Kim, G. H. Kim, M. G. Yang, W.M. Seong, “Design of compact wilkinson power divider using meta-material lines,” The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 17, No. 10, pp. 953-958, Oct. 2006.
  6. M. A. Antoniades and G. V. Eleftheriades, "A broadband wilkinson balun using microstrip metamaterial lines," IEEE Antennas and Wireless Propagation Letters, Vol. 4, pp. 209-212, 2005. https://doi.org/10.1109/LAWP.2005.851005
  7. J. Kim, H. Chung, and J. Choi, “Design of compact and broadband wilkinson baluns using metamaterial phase shifting transmission lines,” IEICE Electronicx Express, Vol. 6, No. 18, pp. 1332-1336, Sep. 2009. https://doi.org/10.1587/elex.6.1332
  8. NI AWR Design Environment, Microwave Office. ver.11
  9. C. H. Tseng and C. L. Chang, "A broadband quadrature power splitter using metamaterial line," IEEE Microwave Wireless Components Letters, vol.18, no.1, pp.25-27, 2008. https://doi.org/10.1109/LMWC.2007.911981
  10. K. L. Chung, "High-performance circular polarized antenna array using metamaterial-line based feed network," IEEE Transactions on Antennas and Propagation, Vol. 61 no.12, pp.6233-6237, 2013. https://doi.org/10.1109/TAP.2013.2282296