• Title/Summary/Keyword: CO conversion

Search Result 1,488, Processing Time 0.029 seconds

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Characterization of Enhanced CO Oxidation Activity by Alumina Supported Platinum Catalyst

  • Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1071-1077
    • /
    • 2009
  • A novel pretreatment technique was applied to the conventional Pt/alumina catalyst to prepare for the highly efficient catalyst for the preferential oxidation of carbon monoxide in hydrogen-rich condition. Their performance was investigated by selective CO oxidation reaction. CO conversion with the oxygen-treated Pt/Alumina catalyst increased remarkably especially at the low temperature below $100^{\circ}C$. This result is promising for the normal operation of the proton exchange membrane fuel cell (PEMFC) without CO poisoning of the anode catalyst. XRD analysis results showed that metallic Pt peaks were not observed for the oxygen-treated catalyst. This implies that well dispersed small Pt particles exist on the catalyst. This result was continued by high resolution transmission electron microscopy (HRTEM) analysis. Consequently, it can be concluded that highly dispersed Pt nanoparticles could be prepared by the novel pretreatment technique and thus, CO conversion could be increased considerably especially at the low temperatures below $100^{\circ}C$.

A Study on the Conversion Method of CO2 Emission Unit of Automobiles (자동차 CO2 배출가스 배출단위 변환방법 고찰)

  • Han, JO;Kim, HT
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.68-73
    • /
    • 2019
  • We proposed a method to convert the CO2 emission data of vehicles collected from the chassis dynamometer test from distance unit to energy unit which generally measured from the engine dynamometer tests. In the future, if engine dynamometer tests are limited, it is expected to be applied as an alternative method to calculate CO2 emission based on energy unit through the chassis dynamometer test. At this moment, engine efficiency is required and the test mode average efficiency should be used to improve the accuracy, not the result derived from specific speed and load conditions. Also, this method was applied to foreign data and the results were within 0.2%. However, CO, NOx and THC which have very low emission characteristics except CO2, are limited by the method proposed in this study and need to be considered separatively.

Negative Conversion of Polymerase Chain Reaction and Clinical Outcomes according to the SARS-CoV-2 Variant in Critically Ill Patients with COVID-19

  • Tae Hun Kim;Eunjeong Ji;Myung Jin Song;Sung Yoon Lim;Yeon Joo Lee;Young-Jae Cho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.2
    • /
    • pp.142-149
    • /
    • 2023
  • Background: Coronavirus disease 2019 (COVID-19) is an ongoing global public health threat and different variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified. This study aimed to analyse the factors associated with negative conversion of polymerase chain reaction (PCR) and prognosis in critically ill patients according to the SARS-CoV-2 variant. Methods: This study retrospectively analysed 259 critically ill patients with COVID-19 who were admitted to the intensive care unit of a tertiary medical center between January 2020 and May 2022. The Charlson comorbidity index (CCI) was used to evaluate comorbidity, and a negative PCR test result within 2 weeks was used to define negative PCR conversion. The cases were divided into the following three variant groups, according to the documented variant of SARS-CoV-2 at the time of diagnosis: non-Delta (January 20, 2020-July 6, 2021), Delta (July 7, 2021- January 1, 2022), and Omicron (January 30, 2022-April 24, 2022). Results: The mean age of the 259 patients was 67.1 years and 93 (35.9%) patients were female. Fifty (19.3%) patients were smokers, and 50 (19.3%) patients were vaccinated. The CCI (hazard ratio [HR], 1.555; p<0.001), vaccination (HR, 0.492; p=0.033), and Delta variant (HR, 2.469; p=0.002) were significant factors for in-hospital mortality. The Delta variant (odds ratio, 0.288; p=0.003) was associated with fewer negative PCR conversion; however, vaccination (p=0.163) and remdesivir (p=0.124) treatments did not. Conclusion: The Delta variant of SARS-CoV-2 is associated with lower survival and negative PCR conversion. Contrary to expectations, vaccination and remdesivir may not affect negative PCR conversion in critically ill patients with COVID-19.

The Effect on the Steam Gasification Reaction of Low-Rank Coal Mixed with Waste Catalysts (저급 석탄과 혼합한 폐촉매의 수증기 가스화 반응에 미치는 영향)

  • Kwak, Jaehoon;Seo, Seokjin;Lee, Sojung;Song, Bungho;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.647-653
    • /
    • 2012
  • We have investigated the kinetics and activity of waste catalysts for steam-lignite gasification. Waste catalysts I, II, III and reference $K_2CO_3$ were used and physical mixed with a coal. The gasification experiments were carried out with the low rank coal loaded with 1 wt% and 5 wt% catalyst at the temperature range from 700 to $900^{\circ}C$ using thermobalance reactor. It was observed that the carbon conversion reached almost 100% regardless of the kinds of catalysts at $900^{\circ}C$. The shortest time to reach the designated conversion was obtained for 1 wt% waste catalyst II and 5 wt% $K_2CO_3$ at $900^{\circ}C$. The gasification reaction rate constant increased with increasing the temperature. Highest rate constant was obtained with $K_2CO_3$ at $900^{\circ}C$. The lowest activation energy was 69.42 kJ/mol for 5 wt% waste catalyst II. The waste catalyst had an influence on the reduction of activation energy.

A Study on the Characteristics of Combustion for Substituting $CO_2\;for\;N_2$ in Combustion Air (연소용 공기중 $N_2$$CO_2$대체에 대한 연소특성 해석)

  • Kim, Han-Seok;Ahn, Kook-Young;Kim, Ho-Keun;Lee, Yun-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • [$CO_2$] is a well-known greenhouse gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. The central method of low $CO_2$ emission is Oxygen/CxHy combustion. Theoretically Oxygen/CxHy combustion only produces $CO_2\;and\;H_2O$ and allows convenient recovery of $CO_2$. The combustion characteristics, flame stability, composition in the flame zone and temperature profile were studied experimentally for various compositions of oxidant by substituting $CO_2\;for\;N_2$ with the constant $O_2$ concentration. Results showed that flame became unstable due to the high heat capacity, low transport rate and strong radiation effect of $CO_2$ in comparison with those of $N_2$. The reaction zone was quenched and broadened, as the ratio of $CO_2\;to\;N_2$ was increased. The emission of NOx in flue gas decreased due to the decreased temperature of the reaction zone. As the conversion ratio of $CO_2\;to\;N_2$ was increased, the emission of CO and the higher temperature zone increased due to decrease of reaction rate by the a quenching effect.

  • PDF

Water Gas Shift Reaction Using the Commercial Catalyst Pellets from the Gases by Waste Plastic Gasification (폐플라스틱 가스화에 의한 가스로부터 상용 촉매 펠릿을 이용한 수성가스 전환 반응)

  • JI-MIN YUN;YOUNG-SUB CHOI;JIN-BAE KIM;JIN-BAE KIM;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2023
  • The water gas shift reaction was carried out using the commercial catalyst pellet and the simulated gases expected to occur from waste plastic gasification. In the water gas shift reaction, the high temperature shift reaction and the low temperature shift reaction were continuously performed with CO:H2O ratio of 1:2, 1:2.5, and 1:3, and the CO conversion and H2 increase rate were evaluated. The H2 increase rate increased in order to CO:H2O ratio of 1:3 > CO:H2O ratio of 1:2.5 > CO:H2O ratio of 1:2. The CO conversion showed a high value of more than 97% at each CO:H2O ratio. The water gas shift reaction at a CO:H2O ratio of 1:3 showed the highest H2 increase rate and CO conversion.

Numerical Analysis of a Gliding Arc Plasma Scrubber for CO2 Conversion (이산화탄소 전환을 위한 글라이딩 아크 플라즈마 스크러버의 수치계산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.339-349
    • /
    • 2014
  • $CO_2$ emission has been gradually increased due to rising fossil fuel use. A gliding arc plasma scrubber (GAPS) was proposed to destruct $CO_2$. For optimum design of GAPS, a CFD analysis has been conducted in different configuration for the system. The parameters considered included gas injection velocity at the nozzle and gas flow rate to gap between electrodes. The reactor configuration affected velocity fields which caused changes in the mixture fraction and the retention time. The mixing effect of $CO_2$ and supplied gas ($CH_4$ and steam) was enhanced by installing a orifice baffle. This revealed that the orifice baffle is effective in $CO_2$ conversion by positioning the reactants in the gas into the center of plasma discharge.