• Title/Summary/Keyword: CO II gene

Search Result 96, Processing Time 0.023 seconds

Prevalence of Canine Coronaviral Enteritis in Korea (개 코로나바이러스성 장염의 발생 역학)

  • Jeoung, Seok-Young;Ahn, So-Jeo;Pak, Son-Il;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • Canine coronavirus (CCV) is a cause of sporadic outbreaks of enteritis in dogs. This study was performed to carry out epidemiological investigation on the recent outbreaks of CCV enteritis of dogs and determined the potential prognostic factors affecting the survival of dogs. The 131 (34.4%) out of 381 fecal samples collected from dogs with enteritis were positive for CCV by RT-PCR. The fecal samples contained genotype I (30.5%), genotype II (29.0%), and both genotypes (40.5%) of CCV. The majority of dogs with CCV infection ranged 6-18 weeks of age. Age over 18 weeks was significantly associated with higher survival rate (P < 0.05). Of the clinical signs examined, dogs without anorexia were significantly higher survival rate (P < 0.01). The 90.1% of dogs with CCV infection were co-infected by CCV and CPV-2. From the results of this study, it can be concluded that CCV infection is widespread in the Korean dog population and CCV may be attributed to be one of the important agents causing enteritis in pups.

Korean BAC Library Construction and Characterization of HLA-DRA, HLA-DRB3

  • Park, Mi-Hyun;Lee, Hye-Ja;Bok, Jeong;Kim, Cheol-Hwan;Hong, Seong-Tshool;Park, Chan;Kimm, Ku-Chan;Oh, Berm-Seok;Lee, Jong-Young
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.418-425
    • /
    • 2006
  • A human bacterial artificial chromosome (BAC) library was constructed with high molecular weight DNA extracted from the blood of a male Korean. This Korean BAC library contains 100,224 clones of insert size ranging from 70 to 150 kb, with an average size of 86 kb, corresponding to a 2.9-fold redundancy of the genome. The average insert size was determined from 288 randomly selected BAC clones that were well distributed among all the chromosomes. We developed a pooling system and three-step PCR screen for the Korean BAC library to isolate desired BAC clones, and we confirmed its utility using primer pairs designed for one of the clones. The Korean BAC library and screening pools will allow PCR-based screening of the Korean genome for any gene of interest. We also determined the allele types of HLA-DRA and HLA-DRB3 of clone KB55453, located in the HLA class II region on chromosome 6p21.3. The HLA-DRA and DRB3 genes in this clone were identified as the DRA*010202 and DRB3*01010201 types, respectively. The haplotype found in this library will provide useful information in future human disease studies.

Cytokine Reporter Mouse System for Screening Novel IL12/23 p40-inducing Compounds

  • Im, Wooseok;Kim, Hyojeong;Yun, Daesun;Seo, Sung-Yum;Park, Se-Ho;Locksley, Richard M.;Hong, Seokmann
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.288-296
    • /
    • 2005
  • Cytokines interleukin (IL) 12 and 23 play critical roles in linking innate and adaptive immune responses. They are members of heterodimeric cytokines, sharing a subunit p40. Although IL12/23 p40 is mainly induced in macrophages and dendritic cells (DCs) after stimulation with microbial Toll-like receptor ligands, methods to monitor the cells that produce IL12/23 p40 in vivo are limited. Recently, the mouse model to track p40-expressing cells with fluorescent reporter, yellow fluorescent protein, has been developed. Macrophages and DCs from these mice faithfully reported p40 induction using the fluorescent marker. Here we took advantage of these reporter mice to screen bio-compounds for p40-inducing activity. After screening hundreds of compounds, we found several extracts inducing IL12/23 p40 gene expression. Treatment of DCs with these extracts induced the expression of MHC class II and co-stimulatory molecules, which implies that these might be useful as adjuvants. Next, the in vivo target immune cells of candidate compounds were examined. The reporter system can be useful to identify cells producing IL12 or IL23 in vivo as well as in vitro. Thus, our cytokine reporter system proved to be a valuable reagent for screening for immunostimulatory molecules and identification of target cells in vivo.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Metabolites profiling and hypolipidemic/hypocholesterolemic effects of persimmon (Diosyros kaki Thumb.) by different processing procedures: in vitro and in vivo studies (제조방법에 따른 떫은감 (Diosyros kaki Thumb.)의 대사체 프로파일링과 중성지질/콜레스테롤 대사 관련 유전자발현 연구 : in vitro 및 in vivo 연구)

  • Park, Soo-Yeon;Oh, Eun-Kyung;Lim, Yeni;Shin, Ji-Yoon;Jung, Hee-Ah;Park, Song-Yi;Lee, Jin Hee;Choe, Jeong-Sook;Kwon, Oran
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.275-286
    • /
    • 2018
  • Purpose: Our previous study demonstrated that persimmon (Diospyros kaki Thumb.) at different stages of ripening provided different protective effects against high-fat/cholesterol diet (HFD)-induced dyslipidemia in rats. In this study, we compared the metabolites profile and gene expressions related to triglyceride (TG)/cholesterol metabolism in vitro and in vivo after treating with persimmon water extracts (PWE) or tannin-enriched persimmon concentrate (TEP). Methods: Primary and secondary metabolites in test materials were determined by GC-TOF/MS, UHPLC-LTQ-ESI-IT-MS/MS, and UPLC-Q-TOF-MS. The expression of genes related to TG and cholesterol metabolism were determined by RT-PCR both in HepG2 cells stimulated by oleic acid/palmitic acid and in liver tissues obtained from Wistar rats fed with HFD and PWE at 0, 150, 300, and 600 mg/d (experiment I) or TEP at 0, 7, 14, and 28 mg/d (experiment II) by oral gavage for 9 weeks. Results: PLS-DA analysis and heatmap analysis demonstrated significantly differential profiling of metabolites of PWE and TEP according to processing of persimmon powder. In vitro, TEP showed similar hypolipidemic effects as PWE, but significantly enhanced hypocholesterolemic effects compared to PWE in sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesterol $7{\alpha}-hydroxylase$ (CYP7A1), and low density lipoprotein receptor (LDLR) gene expression. Consistently, TEP and PWE showed similar hypolipidemic capacity in vivo, but significantly enhanced hypocholesterolemic capacity in terms of SREBP2, HMGCR, and bile salt export pump (BSEP) gene expression. Conclusion: These results suggest that column extraction after hot water extraction may be a good strategy to enhance tannins and long-chain fatty acid amides, which might cause stimulation of hypocholesterolemic actions through downregulation of cholesterol biosynthesis gene expression and upregulation of LDL receptor gene expression.

Autophagy Inhibitor, 3-Methyladenine, Reduces Preimplantation Development and Blastocyst Qualities in Pigs

  • Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Lee, E-Nok;Son, Hyeong-Hoon;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.287-294
    • /
    • 2011
  • Autophagy is a process of intracellular bulk protein degradation, in which the accumulated proteins and cytoplasmic organelles are degraded. It plays important roles in cellular homeostasis, apoptosis, and development, but its role during early embryo development remains contentious. Therefore, in the present study, we investigated the effects of 3-methyladenine (3-MA) on early embryonic development in pigs, we also investigated several indicators of developmental potential, including mitochondrial distribution, genes expressions (autophagy-, apoptosis- related genes), apoptosis and ER-stress, which are affected by 3-MA. After in vitro maturation and fertilization, presumptive pig embryos were cultured in PZM-3 medium supplemented with 3-MA for 2 days at $39^{\circ}C$ 5% $CO_2$ in air. Developmental competence to the blastocyst stage in the presence of 3-MA was gradually decreased according to increasing concentration. Thus, all further experiments were performed using 2 mM 3-MA. Blastocysts that developed in the 3-MA treated group decreased LC3-II intensity and expressions of autophagy related genes than those of the untreated control, resulting in down-regulates the autophagy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 3-MA treated group compared with control ($6.0{\pm}1.0$ vs $3.3{\pm}0.6$, p<0.05). Also, the expression of the pro-apoptotic gene Bax increased in 3-MA treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. Mito Tracker Green FM staining showed that blastocysts derived from the 3-MA treated group had lower mitochondrial integrity than that of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. Then, the expression of the spliced form of pXBP-1 product (pXBP-1s) increased in 3-MA treated group, resulting increase of ER-stress. Taken together, these results indicate that inhibition of autophagy by 3-MA is closely associated with apoptosis and ER-stress during preimplantation periods of porcine embryos.

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil;Kim, Yoon A;Kim, Sung Kyum;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.588-596
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

Effect of Feed Types on Ochratoxin A Disappearance in Goat Rumen Fluid

  • Upadhaya, Santi Devi;Yang, Liu;Seo, Ja-Kyeom;Kim, Myung-Hoo;Lee, Chang-Kyu;Lee, Chan-Ho;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.198-205
    • /
    • 2011
  • This study was conducted to investigate the effect of feed types on Ochratoxin A (OTA) degradation by Korean native goats. Rumen fluid from canulated goats fed whole roughage or 50% roughage served as a source of micro-organisms. Experiments were undertaken i) to investigate OTA degradation ability in a $2{\times}4$ factorial arrangement with different feed types (100% roughage vs. 50% roughage) and rumen fluid fractions (whole rumen fluid, cells, autoclaved rumen fluid and supernatant) supplemented with OTA ii) to evaluate OTA degradation by the rumen fluid of goats fed two different diets at different time points (0, 3, 6, 9 and 12 h) of feeding iii) to isolate potential rumen microorganisms and iv) to identify elements responsible for OTA degradation. Rumen fluid from goats fed 100% roughage had higher (p<0.05) OTA degradability than 50% roughage diets. OTA degradation based on rumen fluid collection times showed that rumen fluid at 0 h showed significantly higher (p<0.05) degradability. Carboxypeptidase A (CPA) enzyme has been reported to be responsible for OTA degradation. Thus, using real time PCR, primers designed to target the CPA gene from Bacillus licheniformis could be amplified using genomic DNA from rumen fluid of goats and sequenced, thus enabling evaluation of the Bacillus population under different feeding condition and times. Our findings showed that the Bacillus population was significantly higher (p<0.05) before feeding (0 h) in animals which were fed a whole roughage diet, giving indirect evidence of OTA degradation being influenced by Bacillus sps. Thus, it can be concluded that OTA degradability is influenced by feed, feeding time and Bacillus licheniformis population.

Effect of Acetosyringone and Variety on Transformation of Orchardgrass (오차드그래스의 형질전환에 있어서 Acetosyringone과 품종이 미치는 영향)

  • Lee, Ki-Won;Lee, Sang-Hoon;Lee, Dong-Gi;Kim, Do-Hyun;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.193-198
    • /
    • 2006
  • Effects of acetosyringone and on Agrobacterium-mediated transformation of orchardgrass were investigated. Embryogenic calli induced from 3 varieties, Frontier, Potomac and Roughrider, were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase(HPT), neomycin phosphotransferase II(NPTII) and intron-containing ${\beta}-glucuronidase$ (intron-GUS) genes in the T-DNA region. The effects of varieties and acetosyringone(AS) concentrations on transformation and the expression of the GUS gene were investigated. Inclusion of $200{\mu}M$ AS in inoculation and co-cultivation media lead to a significant increase in stable transformation efficiency. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and PCR analysis of transgenic plants demonstrated that transgenes were integrated into the genome of orchardgrass.