Browse > Article
http://dx.doi.org/10.5333/KGFS.2006.26.4.193

Effect of Acetosyringone and Variety on Transformation of Orchardgrass  

Lee, Ki-Won (Division of Applied Life Science, Gyeongsang National University)
Lee, Sang-Hoon (Division of Applied Life Science, Gyeongsang National University)
Lee, Dong-Gi (Division of Applied Life Science, Gyeongsang National University)
Kim, Do-Hyun (Division of Applied Life Science, Gyeongsang National University)
Lee, Byung-Hyun (Division of Applied Life Science, Gyeongsang National University)
Publication Information
Journal of The Korean Society of Grassland and Forage Science / v.26, no.4, 2006 , pp. 193-198 More about this Journal
Abstract
Effects of acetosyringone and on Agrobacterium-mediated transformation of orchardgrass were investigated. Embryogenic calli induced from 3 varieties, Frontier, Potomac and Roughrider, were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase(HPT), neomycin phosphotransferase II(NPTII) and intron-containing ${\beta}-glucuronidase$ (intron-GUS) genes in the T-DNA region. The effects of varieties and acetosyringone(AS) concentrations on transformation and the expression of the GUS gene were investigated. Inclusion of $200{\mu}M$ AS in inoculation and co-cultivation media lead to a significant increase in stable transformation efficiency. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and PCR analysis of transgenic plants demonstrated that transgenes were integrated into the genome of orchardgrass.
Keywords
Agrobacterium; Orchradgrass; Transformation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jefferson, R.A. 1987. Assay chimeric genes in plant: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387-405   DOI
2 Spangenberg, G., Z.Y. Wang and Potrykus. 1998. Biotechnology in forage and turf grass improvement. Frankel etal. Monographsontheoraticalandappliedgenetics. Vol. 23. Springer Verlag. Heidelberg. pp. 192-221
3 Lee, S.-H., D.-G. Lee, H.-S. Woo, K.-W. Lee, D.-H. Kim, S.-S. Kwak, J.-S. Kim, Hyegi. Kim, Nagib Ahsan, M.S. Choi, J.-K. Yang and B.-H. Lee. (2006). Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seedderived callus tissues. Plant Science. 171:408-414   DOI   ScienceOn
4 Murashige T and F. Skoog 1962. A revise medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15:473-497   DOI
5 Dong. S. and R. Qu. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453-1458   DOI   ScienceOn
6 Hiei, Y., S. Ohta, T. Komariand and T. Kumasiro. 1994. Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282   DOI   ScienceOn
7 Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari, and T. Kumashiro. 1996. High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotech. 14:745-750   DOI   ScienceOn
8 Lee, S.-H., D.-G. Lee, H.-S. Woo and B.-H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derive callus via Agrobacteriummediated transformation. Asian-Aust J Anim Sci. 17:1390-1394   DOI
9 McKersie, B.D. 1997. Improving forage production systems using biotechnolgy. In: McKersie, B. D. and Brown, D.C.W. (Eds), Biotechnology in Agriculture Series, No. 17, CAB International, Wallingford, p. 3
10 Usami, S.S., Morikawa, I. Takabe and T. Machida. 1987 .Absence in monocotyledonous plant so the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209:221-226   DOI
11 Dalton, S.J., A.J.E. Bettany, E. Timms and P. Morris. 1999. Co-transformed, diploid Loliumperenne, Lolium multiflorum and Lolium temulentum plants produced by microprojectile bombardment. Plant Cell Rep. 18:721-726   DOI
12 Van, S.E and D.A. Sleper. 1996. Orchardgrass. In: Moser, L. E. etal(eds), Cool-season for age grasses. Vol 34. ASA. CSSA. and SSSA. Madison WI. pp. 503-534
13 Bajaj, S.Y., J. Ran, G. Phillips, S. Kulrajathevan, D.K. Pal, C. Elborough and S. Puthigae. 2006. A high throughput Agrobacterium tumefaciensmediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep. 25:651-659   DOI
14 Bettany, J.E., S.J. Dalton, E. Timms, B. Manderyck, M.S. Dhanoa and P. Morris. 2003. Agrobacterium tumefaciens-mediated transformation of Festuca arundin acea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep. 21:437-444   DOI
15 Chu, C.C., C.S. Wang, C.C. Sun, C. Hsu, K.C. Yin, C.Y. Chu and F. Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comp arative experiments on the nitrogen sources. Scienta Sinic. 18:659-668