Browse > Article
http://dx.doi.org/10.4163/jnh.2018.51.4.275

Metabolites profiling and hypolipidemic/hypocholesterolemic effects of persimmon (Diosyros kaki Thumb.) by different processing procedures: in vitro and in vivo studies  

Park, Soo-Yeon (Department of Nutritional Science and Food Management, Ewha Womans University)
Oh, Eun-Kyung (Department of Nutritional Science and Food Management, Ewha Womans University)
Lim, Yeni (Department of Nutritional Science and Food Management, Ewha Womans University)
Shin, Ji-Yoon (Ewha Graduate School of Converging Clinical&Public Health)
Jung, Hee-Ah (Department of Food Science and Biotechnology, CHA University)
Park, Song-Yi (Department of Food Science and Biotechnology, CHA University)
Lee, Jin Hee (Department of Food Science and Biotechnology, CHA University)
Choe, Jeong-Sook (Department of Agrofood Resources, Rural Development Administration National Institute of Agricultural Sciences)
Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University)
Publication Information
Journal of Nutrition and Health / v.51, no.4, 2018 , pp. 275-286 More about this Journal
Abstract
Purpose: Our previous study demonstrated that persimmon (Diospyros kaki Thumb.) at different stages of ripening provided different protective effects against high-fat/cholesterol diet (HFD)-induced dyslipidemia in rats. In this study, we compared the metabolites profile and gene expressions related to triglyceride (TG)/cholesterol metabolism in vitro and in vivo after treating with persimmon water extracts (PWE) or tannin-enriched persimmon concentrate (TEP). Methods: Primary and secondary metabolites in test materials were determined by GC-TOF/MS, UHPLC-LTQ-ESI-IT-MS/MS, and UPLC-Q-TOF-MS. The expression of genes related to TG and cholesterol metabolism were determined by RT-PCR both in HepG2 cells stimulated by oleic acid/palmitic acid and in liver tissues obtained from Wistar rats fed with HFD and PWE at 0, 150, 300, and 600 mg/d (experiment I) or TEP at 0, 7, 14, and 28 mg/d (experiment II) by oral gavage for 9 weeks. Results: PLS-DA analysis and heatmap analysis demonstrated significantly differential profiling of metabolites of PWE and TEP according to processing of persimmon powder. In vitro, TEP showed similar hypolipidemic effects as PWE, but significantly enhanced hypocholesterolemic effects compared to PWE in sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesterol $7{\alpha}-hydroxylase$ (CYP7A1), and low density lipoprotein receptor (LDLR) gene expression. Consistently, TEP and PWE showed similar hypolipidemic capacity in vivo, but significantly enhanced hypocholesterolemic capacity in terms of SREBP2, HMGCR, and bile salt export pump (BSEP) gene expression. Conclusion: These results suggest that column extraction after hot water extraction may be a good strategy to enhance tannins and long-chain fatty acid amides, which might cause stimulation of hypocholesterolemic actions through downregulation of cholesterol biosynthesis gene expression and upregulation of LDL receptor gene expression.
Keywords
Diospyros kaki Thumb.; metabolites profiling; Hep G2 cells; diet-induced hyperlipidemic rats;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Roth BD, Blankley CJ, Hoefle ML, Holmes A, Roark WH, Trivedi BK, Essenburg AD, Kieft KA, Krause BR, Stanfield RL. Inhibitors of acyl-CoA:cholesterol acyltransferase. 1. Identification and structure-activity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 1992; 35(9): 1609-1617.   DOI
2 Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor ${\gamma}$ expression. Mol Cell Biol 2004; 24(8): 3430-3444.   DOI
3 Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol 2003; 121(3): 441-447.   DOI
4 Lee SM, Han HW, Kim Y. JNK-mediated SREBP-2 processing by genistein up-regulates LDLR expression in HepG2 cells. Nutr Food Sci 2014; 4: 308.
5 Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry 1992; 31(20): 4737-4749.   DOI
6 Hashimoto K, Cohen RN, Yamada M, Markan KR, Monden T, Satoh T, Mori M, Wondisford FE. Cross-talk between thyroid hormone receptor and liver X receptor regulatory pathways is revealed in a thyroid hormone resistance mouse model. J Biol Chem 2006; 281(1): 295-302.   DOI
7 Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264-1272.   DOI
8 Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13(4): 376-388.   DOI
9 Yokozawa T, Park CH, Noh JS, Roh SS. Role of oligomeric proanthocyanidins derived from an extract of persimmon fruits in the oxidative stress-related aging process. Molecules 2014; 19(5): 6707-6726.   DOI
10 Lee YA, Cho EJ, Tanaka T, Yokozawa T. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J Nutr Sci Vitaminol (Tokyo) 2007; 53(3): 287-292.   DOI
11 Ahn Y, Gebereamanuel MR, Oh EK, Kwon O. Inhibitory effects of persimmon (Diospyros kaki Thumb.) against diet-induced hypertriglyceridemia/hypercholesterolemia in rats. J Nutr Health 2017; 50(3): 225-235.   DOI
12 Zou B, Ge ZZ, Zhang Y, Du J, Xu Z, Li CM. Persimmon tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-${\kappa}$B activation and inflammatory responses in high-fat diet rats. Food Funct 2014; 5(7): 1536-1546.   DOI
13 Zou B, Li CM, Chen JY, Dong XQ, Zhang Y, Du J. High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats. Food Res Int 2012; 48(2): 970-977.   DOI
14 Jang IC, Jo EK, Bae MS, Lee HJ, Jeon GI, Park E, Yuk HG, Ahn GH, Lee SC. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J Med Plant Res 2010; 4(2): 155-60.
15 Matsumoto K, Yokoyama S, Gato N. Hypolipidemic effect of young persimmon fruit in C57BL/6.KOR-ApoEshl mice. Biosci Biotechnol Biochem 2008; 72(10): 2651-2659.   DOI
16 Matsumoto K, Yokoyama S, Gato N. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 2010; 24(2): 205-210.   DOI
17 Del Bubba M, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 2009; 22(7-8): 668-677.   DOI
18 Association of Official Analytical Chemists. Official methods of analysis. 15th edition. Arlington (VA): Association of Official Analytical Chemists; 1990.
19 Adams MA, Bobik A, Korner PI. Differential development of vascular and cardiac hypertrophy in genetic hypertension. Relation to sympathetic function. Hypertension 1989; 14(2): 191-202.   DOI
20 Karaman S, Toker OS, Yuksel F, Cam M, Kayacier A, Dogan M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: technique for order preference by similarity to ideal solution to determine optimum concentration. J Dairy Sci 2014; 97(1): 97-110.   DOI
21 Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 2006; 136(10): 2588-2593.   DOI
22 Latha RC, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 2011; 189(1-2): 112-118.   DOI
23 Zhao D, Zhou C, Sheng Y, Liang G, Tao J. Molecular cloning and expression of phytoene synthase, lycopene beta-cyclase, and beta-carotene hydroxylase genes in persimmon (Diospyros kaki L.) fruits. Plant Mol Biol Report 2011; 29(2): 345-351.   DOI
24 Santos AD, Fonseca FA, Dutra LM, Santos MF, Menezes LR, Campos FR, Nagata N, Ayub R, Barison A. $^1H$ HR-MAS NMR-based metabolomics study of different persimmon cultivars (Diospyros kaki) during fruit development. Food Chem 2018; 239: 511-519.   DOI
25 Bitou N, Ninomiya M, Tsujita T, Okuda H. Screening of lipase inhibitors from marine algae. Lipids 1999; 34(5): 441-445.   DOI
26 Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 2007; 98(4): 727-735.   DOI
27 Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules 2011; 16(6): 5054-5061.   DOI