• Title/Summary/Keyword: CO Hydrogenation

Search Result 79, Processing Time 0.018 seconds

Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

  • Bathla, Aadil;Pal, Bonamali
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.486-496
    • /
    • 2018
  • Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous $TiO_2$ leads to several surface modifications. The bimetallic PNT-3 ($Pd_3@Ni_1/mTiO_2$) exhibited large surface area ($212m^2g^{-1}$), and low recombination rate of the charge carriers ($e^--h^+$). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant $k=5.31{\times}10^{-1}h^{-1}$ owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/$mTiO_2$ interface.

Cationic Iridium(I) Complex of Ethyl Cinnamate and Hydrogenation of Unsaturated Esters with Iridium(I)-Perchlorato Complex

  • Yang, Kyung-Joon;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.466-468
    • /
    • 1986
  • Reaction of $Ir(ClO_4)(CO)(PPh_3)_2$ with trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ produces a new cationic iridium(I) complex, [Ir (trans-$C_6H_5CH$ = $CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ where trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ seems to be coordinated through the carbonyl oxygen rather than through the $\pi$-system of the olefinic group according to the spectral data. It has been found that Ir$(ClO_4)(CO)(PPh_3)_2$ catalyzes the hydrogenation of $CH_2$ = $CHCO_2C_2H_5$, trans-$CH_3CH$ = $CHCO_2C_2H_5$ and trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ to $CH_3CH_2CO_2C_2H_5$, $CH_3CH_2CH_2CO_2C_2H_5$ and $C_6H_5CH_2CH_2CO_2C_2H_5$, respectively at room temperature under the atmospheric pressure of hydrogen. The relative rates of the hydrogenation of the unsaturated esters are mostly understood in terms of steric reasons.

Reactions, Hydrogenation and Isomerization of Unsaturated Esters with a Rhodium(I)-Perchlorato Complex

  • Jeong Hyun Mok;Chin Chong Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.468-471
    • /
    • 1986
  • The isolated products from the reactions of $Rh(ClO_4)(CO)(PPh_3)_2$ (1) with CH_2$ = $CHCO_2C_2H_5$ (2) and trans-$CH_3CH$ = $CHCO_2C_2H_5$ (3) contain 80∼ 90% of $[Rh(CH_2 = CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ (4) and [Rh(trans-$CH_3CH = CHCO_2C_2H_5(CO)(PPh_3)_2]ClO_4$ (5), respectively where 2 and 3 seem to be coordinated through the carbonyl oxygen. It has been found that complex 1 catalyzes the isomerization of $CH_2 = CH(CH_2)_8CO_2C_2H_5$ (6) to $CH_3(CH_2)_nCH = CH(CH_2)_{7-n}CO_2C_2H_5$ (n = 0∼7) under nitrogen at 25$^{\circ}C$. The isomerization of 6 is slower than that of $CH_2 = CH(CH_2)_9CH_3$ to $CH_3(CH_2)_nCH$ = $CH(CH_2)_{8-n}CH_3$ (n = 0∼8), which is understood in terms of the interactions between the carbonyl oxygen of 6 and the catalyst. It has been also observed that complex 1 catalyzes the hydrogenation of 2, 3, 6, trans-$C_6H_5CH = CHCO_2C_2H_5$ (7), $CH_3(CH_2)_7CH = CH(CH_2)_7CO_2C_2H_5$ (8) and $CH_2 = CH(CH_2)_9CH_3$ (9), and the isomerization (double bond migration) of 6 and 9 under hydrogen at 25$^{\circ}C$. The interactions between the carbonyl oxygen of the unsaturated esters and the catalyst affect the hydrogenation in such a way that the hydrogenation of the unsaturated esters becomes slower than that of simple olefins.

Effects of Catalyst Promotion on the Selective Hydrogenation of Biphenol Using Various Pd/C Catalysts

  • Cho, Hong-Baek;Hong, Bum-Eui;Park, Jai-Hyun;Ahn, Sung-Hyun;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.12
    • /
    • pp.2434-2440
    • /
    • 2008
  • The effect of sodium (Na) promotion was studied in the biphenol (BP) hydrogenation using various Pd/C catalysts. Different amounts of sodium metal were used for promotion with Pd/C and their effects on BP hydrogenation were observed. The promotion order was changed to compare the effect of the position of the promoter in relation to the palladium (Pd) metal on the catalytic activity and yield of the final product, bicyclohexyl-4,4'-diol (BHD). Pd/C catalysts prepared from different methods were also sodium-promoted and the changes of the reaction pathway according to the type of promoted Pd/C catalyst were compared.

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon;Kang, Hae-Jin;Kim, Su-Jin;Park, Sung-Bae;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1682-1688
    • /
    • 2005
  • Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst (산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화)

  • Choi, Yi Sun;Kim, Soo Young;Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.326-331
    • /
    • 2017
  • Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), $N_2$ adsorption-desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.

Effect of Alkali Promoter in CO Hydrogenation Using Co/NaY Catalyst (Co/NaY 촉매를 이용한 CO 수소화 반응에 있어서 알칼리 첨가제의효과)

  • Myong-Mo Sung;Min-Young Youn;Yunsoo Kim;Hang Nam Paik
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.501-506
    • /
    • 1988
  • The effects of alkali promoters on the activity and selectivity of Co/NaY catalyst have been investigated. The catalysts were prepared by impregnating NaY with aqueous solutions of alkali compounds and a benzene solution of $Co_2(CO)_8$. Hydrocarbon synthesis was studied in a flow reactor under the reaction conditions : temperature = 200∼250$^{\circ}C$, space velocity = 120∼$160hr^{-1}$, pressure = 1 atm, $H_2$/CO = 1. As the basicity of alkali promoter increases, the olefin selectivity, probability of chain growth, and CO$_2$ formation increase and methane formation decreases. The activity of CO hydrogenation increases with the pH of alkali solutions.

  • PDF

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

Liquid Phase Hydrogenation of Croton Aldehyde with Nickel Catalysts (니켈촉매에 의한 크로톤 알데히드의 액상 수소첨가반응)

  • Lee, Hak Sung;Park, Young Hae;Kim, Yong Sup
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.509-516
    • /
    • 1994
  • Liquid phase hydrogenation come into use for the removal process of unsaturated hydrocarbon such as croton aldehyde. The croton aldehyde is generated in a very small amount as by-product in the ethanol production, and it is converted into n-butanol through hydrogenation. Liquid phase hydrogenation is low energy consumption process as compared with gas phase hydrogenation. The nickel catalyst is selected with respect to the economic aspect such as durability and cost. The analysis of the conversion were performed by method of the PMT(permangante time) test. The PMT was sharply decreased as the initial concentrations of croton aldehyde in the ethanol solution were increased. The hydrogenation of croton aldehyde to n-butanol was carried out in sequence after the saturation of the carbon-carbon double bond. The formation of both butyraldehyde and n-butanol followed zero order kinetics. Within expermental conditions the PMT gets longer as reaction temperature goes higer and as LHSV becomes slower, while the reaction pressure has almost no relation with PMT.

  • PDF