DOI QR코드

DOI QR Code

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University) ;
  • Kang, Hae-Jin (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University) ;
  • Kim, Su-Jin (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University) ;
  • Park, Sung-Bae (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University) ;
  • Park, Dong-Ho (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Biomedicinal Chemistry, Institute of Basic Science, Inje University)
  • Published : 2005.11.20

Abstract

Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.

Keywords

References

  1. Wentrcek, P. R.; Wood, B. J.; Wise, H. J. Catal. 1976, 43, 366
  2. Araki, M.; Ponec, V. J. Catal. 1976, 44, 439 https://doi.org/10.1016/0021-9517(76)90421-8
  3. Joyner, R. W. J. Catal. 1977, 50, 176 https://doi.org/10.1016/0021-9517(77)90020-3
  4. Goodman, D. W.; Kelly, R. D.; Madey, T. E.; Yates, Jr, J. T. J. Catal. 1980, 63, 226 https://doi.org/10.1016/0021-9517(80)90075-5
  5. Peebes, P. R.; Wood, B. J.; Wise, H. J. Phys. Chem. 1983, 87, 4378 https://doi.org/10.1021/j100245a014
  6. Fithzharris, W. D.; Katzer, J. R.; Manogue, W. H. J. Catal. 1982, 76, 369 https://doi.org/10.1016/0021-9517(82)90267-6
  7. Weisel, M. D.; Robbins, J. L.; Hoffman, F. M. J. Phys. Chem. 1993, 97, 9441 https://doi.org/10.1021/j100139a031
  8. Bahr, H. A. Gesamelte Abb. Kennt. Kohle 1929, 8, 219
  9. Medsford, S. J. Chem. Soc. 1923, 123, 1452 https://doi.org/10.1039/ct9232301452
  10. Martin, G. A.; Primet, M.; Dalmon, J. A. J. Catal. 1978, 53, 321 https://doi.org/10.1016/0021-9517(78)90104-5
  11. Falconer, J. L.; Zagli, A. E. J. Catal. 1980, 60, 280
  12. Saito, M.; Anderson, A. B. J. Catal. 1981, 67, 296 https://doi.org/10.1016/0021-9517(81)90289-X
  13. Weatherbee, G. D.; Bartholomew, C. H. J. Catal. 1981, 68, 67 https://doi.org/10.1016/0021-9517(81)90040-3
  14. Lizuka, T.; Tanaka, Y.; Tanabe, K. J. Catal. 1982, 76, 1 https://doi.org/10.1016/0021-9517(82)90230-5
  15. Fukitani, T.; Choi, Y.; Sano, M.; Kushida, Y.; Nakamura, J. J. Phys. Chem. B 2000, 104, 1235 https://doi.org/10.1021/jp9920242
  16. Zhou, T.; Liu, A.; Mo,Y.; Zhang, H. J. Phys. Chem. A 2000, 104, 4505 https://doi.org/10.1021/jp9929622
  17. Watwe, R. M.; Bengaard, H. S.; Nielsen, R.; Norskev, J. K. J. Catal. 2000, 189, 16 https://doi.org/10.1006/jcat.1999.2699
  18. Ackermann, M.; Robach, O.; Walker, C.; Quines, C.; Isern, H.; Ferrer, S. Surface Science 2004, 557, 21 https://doi.org/10.1016/j.susc.2004.03.061
  19. Peebles, D. E.; Goodman, D. W. J. Phys. Chem. 1983, 87, 4378 https://doi.org/10.1021/j100245a014
  20. Goodman, D. W.; Kelly, R. D.; Madey, T. E.; White, J. M. J. Catal. 1980, 64, 479 https://doi.org/10.1016/0021-9517(80)90519-9
  21. Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S.; Park, J. Appl. Surf. Sci. 2001, 181, 265 https://doi.org/10.1016/S0169-4332(01)00398-1
  22. Anderson, A. B. J. Phys. Chem. 1975, 65, 1187
  23. Anderson, A. B.; Grimes, R. W.; Hong, S. Y. J. Phys. Chem. 1987, 91, 4245 https://doi.org/10.1021/j100300a009
  24. Anderson, A. B.; Jen, S. F. J. Phys. Chem. 1990, 94, 1607 https://doi.org/10.1021/j100367a071
  25. Parr, R. G. Quantum Theory of Molecular Electronic Structure; Benjamin: New York, 1964
  26. Anderson, A. B. J. Chem. Phys. 1972, 56, 32112
  27. Anderson, A. B. J. Chem. Phys. 1976, 64, 4046 https://doi.org/10.1063/1.432013
  28. Ruy, G. H.; Park, S. C.; Lee, S.-B. Surf. Sci. 1999, 427-428, 419
  29. Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2000, 21, 779
  30. Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2004, 25, 1314 https://doi.org/10.5012/bkcs.2004.25.9.1314
  31. Anderson, A. B.; Choe, S. J. J. Phys. Chem. 1989, 93, 6145 https://doi.org/10.1021/j100353a039
  32. Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 1994, 15, 933
  33. Toyoshima; Somorjai, G. A. Catal. Rev. Sci. Eng. 1979, 19, 1054 https://doi.org/10.1080/03602457908065102
  34. Eichler, A. Surf. Sci. 2003, 526, 332 https://doi.org/10.1016/S0039-6028(02)02682-1
  35. Huber, K. P.; Herzberg, G. Molecular and Spectra and Molecular Structure IV. Constant of Diatomic Molecules; Van Nostrand Reinhold Company: 1979
  36. Siegbahn, P. M.; Panas, I. Surf. Sci. 1990, 240, 37 https://doi.org/10.1016/0039-6028(90)90728-Q
  37. Dalmoon, J. A.; Martin, G.. A. J. Chem. Soc., Faraday Trans. 1 1976, 75, 1011 https://doi.org/10.1039/f19797501011
  38. Solymosi, F.; Erdohelyi, A.; Basagi, T. J. Catal. 1981, 68, 67 https://doi.org/10.1016/0021-9517(81)90040-3
  39. Langeveld, A. D.; Koster, A.; Santen, R. A. Surface Science 1990, 225, 143 https://doi.org/10.1016/0039-6028(90)90432-8
  40. Alex Mills, G.; Steffgen, F. W. Catal. Rev. 1973, 8, 159 https://doi.org/10.1080/01614947408071860
  41. Rostrup-Nielsen, J. R. Catalysis, Science and Technology; Anderson, J. R.; Boudart, M., Eds.; Spring-Verlag: Berlin, 1984; Vol. 5, Chap. 1
  42. Park, S. C.; Park, W. K.; Bowman, J. M. Surf. Sci. 1999, 427-428, 343 https://doi.org/10.1016/S0039-6028(99)00300-3
  43. Head-Gordon, M.; Tully, J. C. J. Chem. Phys. 1992, 96, 3939 https://doi.org/10.1063/1.461896

Cited by

  1. Recent advances in catalytic hydrogenation of carbon dioxide vol.40, pp.7, 2011, https://doi.org/10.1039/c1cs15008a
  2. Methanation of carbon dioxide: an overview vol.5, pp.1, 2011, https://doi.org/10.1007/s11705-010-0528-3
  3. vol.4, pp.12, 2012, https://doi.org/10.1002/cctc.201200397
  4. Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface – a density functional theoretical study vol.15, pp.15, 2013, https://doi.org/10.1039/c3cp44495c
  5. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst vol.3, pp.10, 2013, https://doi.org/10.1039/c3cy00355h
  6. Computational Approaches to the Chemical Conversion of Carbon Dioxide vol.6, pp.6, 2013, https://doi.org/10.1002/cssc.201200872
  7. Development of NiCu Catalysts for Aqueous-Phase Hydrodeoxygenation vol.4, pp.8, 2014, https://doi.org/10.1021/cs500562u
  8. ) in various structures supported on unzipped graphene oxide – a DFT study vol.17, pp.16, 2015, https://doi.org/10.1039/C5CP01121C
  9. Nanoporous Materials as New Engineered Catalysts for the Synthesis of Green Fuels vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045638
  10. methanation on Ni@MOF-5 via control of active species dispersion vol.51, pp.9, 2015, https://doi.org/10.1039/C4CC08733J
  11. : Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy vol.138, pp.40, 2016, https://doi.org/10.1021/jacs.6b06939
  12. vol.30, pp.11, 2016, https://doi.org/10.1021/acs.energyfuels.6b01723
  13. Supported Catalysts for CO2 Methanation: A Review vol.7, pp.2, 2017, https://doi.org/10.3390/catal7020059
  14. in a dielectric barrier discharge reactor: effect of argon addition vol.50, pp.18, 2017, https://doi.org/10.1088/1361-6463/aa64bb
  15. Methanation at Very Low COx/H2 Ratio: Effect of Ce on Ni–Ce–Al Catalyst Properties and Empirical Kinetics pp.1572-879X, 2018, https://doi.org/10.1007/s10562-018-2607-x
  16. Conversion pp.16146832, 2018, https://doi.org/10.1002/aenm.201801587
  17. as a New Support vol.8, pp.23, 2018, https://doi.org/10.1002/aenm.201800800
  18. methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability pp.1460-4744, 2019, https://doi.org/10.1039/C8CS00527C
  19. Bifurcation Phase Studies of Belousov-Zhabotinsky Reaction Containing Oxalic Acid and Acetone as a Mixed Organic Substrate in an Open System vol.28, pp.9, 2005, https://doi.org/10.5012/bkcs.2007.28.9.1489
  20. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  21. A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2 vol.266, pp.1, 2009, https://doi.org/10.1016/j.jcat.2009.05.018
  22. CO2 as Carbon Source for Fuel Synthesis vol.45, pp.None, 2005, https://doi.org/10.1016/j.egypro.2014.01.138
  23. Catalytic behavior of supported Ru nanoparticles on the (101) and (001) facets of anatase TiO2 vol.4, pp.21, 2005, https://doi.org/10.1039/c3ra47076h
  24. CO2 Methanation over Supported Ru/Al2O3 Catalysts: Mechanistic Studies by In situ Infrared Spectroscopy vol.1, pp.12, 2005, https://doi.org/10.1002/slct.201600651
  25. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation vol.41, pp.47, 2016, https://doi.org/10.1016/j.ijhydene.2016.08.093
  26. Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters vol.126, pp.2, 2019, https://doi.org/10.1007/s11144-018-1508-8
  27. Tuning Zeolite Properties towards CO 2 Methanation: An Overview vol.11, pp.10, 2019, https://doi.org/10.1002/cctc.201900229
  28. Promotion effect of CO on methanation of CO2-rich gas­­ over nanostructured modified NiO/γ-Al2O3 catalysts vol.10, pp.3, 2005, https://doi.org/10.1088/2043-6254/ab2ec7
  29. Effects of the fabrication strategy on the catalytic performances of Co-Ni bimetal ordered mesoporous catalysts toward CO2 methanation vol.3, pp.11, 2005, https://doi.org/10.1039/c9se00336c
  30. Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production vol.26, pp.36, 2005, https://doi.org/10.1007/s11356-019-06607-8
  31. Multiscale Study of the Mechanism of Catalytic CO2 Hydrogenation: Role of the Ni(111) Facets vol.10, pp.None, 2020, https://doi.org/10.1021/acscatal.0c01599
  32. Essential Role of the Support for Nickel-Based CO2 Methanation Catalysts vol.10, pp.None, 2005, https://doi.org/10.1021/acscatal.0c03471
  33. Fabrication and characterization of Ni-Ce-Zr ternary disk-shaped catalyst and its application for low-temperature CO2 methanation vol.260, pp.None, 2005, https://doi.org/10.1016/j.fuel.2019.116260
  34. Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme vol.712, pp.None, 2005, https://doi.org/10.1016/j.scitotenv.2019.136482
  35. Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation vol.10, pp.5, 2020, https://doi.org/10.3390/catal10050513
  36. Electrocatalytic behaviour of CeZrOx-supported Ni catalysts in plasma assisted CO2 methanation vol.10, pp.14, 2005, https://doi.org/10.1039/d0cy00312c
  37. Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies vol.8, pp.12, 2020, https://doi.org/10.3390/pr8121646
  38. CO2 Methanation: Nickel-Alumina Catalyst Prepared by Solid-State Combustion vol.14, pp.22, 2005, https://doi.org/10.3390/ma14226789
  39. Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases vol.156, pp.None, 2005, https://doi.org/10.1016/j.psep.2021.10.051
  40. A Comparison of the Efficiency of Catalysts Based on Ni, Ni-Co and Ni-Mo in Pressure Pyrolysis of Biomass Leading to Hythane vol.11, pp.12, 2005, https://doi.org/10.3390/catal11121480