• 제목/요약/키워드: CO Gas Sensitivity

검색결과 209건 처리시간 0.027초

촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성 (Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas)

  • 이지영;유일
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.

CO 검지용 후막형 ZnO 센서의 특성 (The Characteristics of Thick-film ZnO Sensor for CO Gas Detection)

  • 김봉희;김상욱;박근영;이승환;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.245-248
    • /
    • 1991
  • Recently, oxide semiconductor gas sensors consisted of n-type semiconductor materials such as $SnO_2$, ZnO and $Fe_2O_3$ have been widely used to detect reducing gases. In this paper, we made the thick-film ZnO gas sensors with $PdCl_2$ as a catalyst and investigated the sensitivity to CO gas. In the thick-film Zno sensor, the highest sensitivity was shown in the sensor with 1wt.% of $PdCl_2$ which was sintered for 1 hour at $700^{\circ}C$ and operated at $300^{\circ}C$.

  • PDF

조기화재 감시시스템을 위한 CO센서의 시그널컨디셔너 성능개선 (Performance Improvement of CO Sensor Signal Conditioner for Early Fire Detection System)

  • 박종찬;손진근
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.82-87
    • /
    • 2017
  • This paper presents performance improvement of CO gas sensor signal conditioner for early fire warning system. The warning system is based on the CO sensor and its advanced signal conditioning modules network that employ electochemical gas sensor. The electochemical has advantage of having a linear output and operating with a low consumption and fast response. This electrochemical gas sensor contains a gas membrane and three electrodes(working, counter, reference electrode) in contact with an electrolyte. To use a three-electrode sensor, a voltage has to be applied between the working and the reference electrode according to the specification of the sensor. In this paper, we designed these requirements that should be considered in temperature compensation algorithm and electrode measurement of CO sensor modules by using advanced signal conditioning method included 3-electrode. Simulation and experimental results show that signal conditioner of CO sensor module using 3-electrode have a advantage linearity, sensitivity and stability, fast response etc..

100 MWe급 순산소연소 발전소 보일러계통 공정설계 및 운전변수 민감도 예측 (100 MWe Oxyfuel Power Plant Boiler System Process Design and Operation Parameters Sensitivity Analysis)

  • 백세현;고성호
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 2013
  • The oxy-fuel combustion is $CO_2$ capture technology that uses mixture of pure $O_2$ and recirculated exhaust as oxidizer. Currently some Oxy-fuel power plants demonstration project is underway in worldwide. Meanwhile research project for converting 125 MWe Young-Dong power plant to 100 MWe oxy-fuel power plants is progress. In this paper, 1 D process analytical approach was applied for conducting process design and operating parameters sensitivity analysis for oxy-fuel combustion of Young-Dong power plant. As a result, appropriate gas recirculation rates was 74.3% that in order to maintain normal rating superheater, reheater steam temperature and boiler heat transfer patterns. And boiler efficiency 85.0%, CPU inlet $CO_2$ mole concentration 71.34% was predicted for retrofitted boiler. The oxygen concentration in the secondary recycle gas is predicted as 27.1%. Meanwhile the oxygen concentration 22.4% and moisture concentration 5.3% predicted for primary recycle gas. As the primary and secondary gas recirculation increases, then heat absorption of the reheater is tends to increases whereas superheater side is decreased, and also the efficiency is tends to decrease, according to results of sensitivity analysis for operating parameters. In addition, the ambient air ingression have a tendency to lead to decline of efficiency for boiler as well as decline of $CO_2$ purity of CPU inlet.

RF magnetron sputtering법으로 제조한 $MoO_3$ 박막의 가스 감지 특성 및 첨가물의 영향 (Gas Sensing Characteristics and Doping Effect of $MoO_3$ Thin Films prepared by RF magnetron sputtering)

  • 황종택;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.460-463
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in $O_2$ atmosphere by RF reactive sputtering using Molybdenum metal target. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}mtorr$ and all deposited films were annealed at $500^{\circ}C$ for 5hours. To investigate gas sensing characteristics of the addition doped $MoO_3$ thin film, Co, Ni and Pt were used as adding dopants. The sensing properties were investigated in tenn of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO at optimum working temperature. Co-doped $MoO_3$ thin film shows the maximum 46.8% of sensitivity in $NH_3$ and Ni-doped $MoO_3$ thin film exhibits 49.7% of sensitivity in $H_2$.

  • PDF

박막형 MoO3가스센서의 가스 감지 특성 및 첨가물의 영향 (Gas Sensing Characteristics and Doping Effect of MoO3Thin Films Sensor)

  • 황종택;장건익;윤대호
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.705-710
    • /
    • 2003
  • MoO$_3$thin films were deposited on electrode of alumina substrates in $O_2$atmosphere by RF reactive sputtering using molybdenum metal target. The deposition was performed at 30$0^{\circ}C$ with 350 W of a forward power in an Ar-O$_2$atmosphere. The working pressure was maintained at 3$\times$10$^{-2}$ torr and all deposited films were annealed at 50$0^{\circ}C$ for 5 hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by using a XRD. To investigate gas sensing characteristics of the doped MoO$_3$thin film, Co, Ni and Pt were used as dopants. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as H$_2$, NH$_3$and CO at optimum working temperature. Co-doped MoO3 thin film shows the maximum 46.8 % of sensitivity in NH$_3$ and Ni-doped MoO$_3$thin film exhibits 49.7 % of sensitivity in H$_2$.

$TiO_2$첨가에 의한 ZnO와 $SnO_2$의 일산화탄소 감응특성 변화 (The Changes of CO Gas Sensing Properties of ZnO and $SnO_2$ with Addition $TiO_2$)

  • 김태원;최우성;전선택
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.312-316
    • /
    • 1998
  • ZnO와 $SnO_2$$ TiO_2$를 첨가시킨 $ZnO-TiO_2$$SnO_2$-$TiO_2$세라믹 복합체를 제작하여 1000ppm 일산화탄소에 대한 감응특성을 조사하였다. 상분석을 위해서 X-선 회절 분석을 하였고, 전자 주사 현미경을 이용해서 시편 파단면의 미세구조를 관찰했다. 일산화탄소 감도는 건조공기 분위기에서 측정한 저항($R_{dry air}$ )과 1000ppm 일산화탄소 분위기에서의 저항($R_{co}$ )을 측정하여 각각의 저항값의 비로 정의하였다. $TiO_{2}$첨가에 의한 ZnO의 일산화탄소 감도의 변화는 ZT5의 경우 최대 감도가 약 1.7배 감소하였고, $TiO _{2}$첨가에 의한 $SnO_{2}$의 일산화탄소 최대 감도는 약 2.5배 증가함으로써 비교적 $ZnO-TiO_2$배 증가함으로써 비교적 $ZnO-TiO_2$배 증가함으로써 비교적 $ZnO-TiO_2$복합체 보다는 $SnO_2$- $TiO_2$복합체의 일산화탄소 감응특성이 우수했다.

  • PDF

금속산화물을 첨가한 Co3O4 후막의 가스 감지특성 (Gas sensing characteristics of Co3O4 thick films with metal oxides)

  • 조창용;박기철;김정규
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.54-62
    • /
    • 2009
  • ${Co_3}{O_4}$ and ${Co_3}{O_4}$-based thick films with additives such as ${Co_3}{O_4}-{Fe_2}{O_3}$(5 wt.%), ${Co_3}{O_4}-{SnO_2}$ (5 wt.%), ${Co_3}{O_4}-{WO_3}$(5 wt.%) and ${Co_3}{O_4}$-ZnO(5 wt.%) were fabricated by screen printing method on alumina substrates. Their structural properties were examined by XRD and SEM. The sensitivities to iso-${C_4}H_{10}$, $CH_4$, CO, $NH_3$ and NO gases were investigated with the thick films heat treated at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. From the gas sensing properties of the films, the films showed p-type semiconductor behaviors. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed higher sensitivity to i-${C_4}H_{10}$ and CO gases than other thick-films. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed the sensitivity of 170 % to 3000 ppm iso-${C_4}H_{10}$ gas and 100 % to 100 ppm CO gas at the working temperature of $250^{\circ}C$. The response time to i-${C_4}H_{10}$ and CO gases showed rise time of about 10 seconds and fall time of about $3{\sim}4$ minutes. The selectivity to i-${C_4}H_{10}$ and CO gases was enhanced in the ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film.

저온동작용 $Co_{3}O_{4}$ 부탄가스 감지 소자(I) ($Co_{3}O_{4}$ butane gas sensor operating at low temperature (I))

  • 정진환;최순돈
    • 센서학회지
    • /
    • 제5권6호
    • /
    • pp.7-14
    • /
    • 1996
  • 저온에서 동작 가능한 센서를 개발하기 위하여 $Co_{3}O_{4}$ 후막 소자를 제조하였다. $Co_{3}O_{4}$ 분말은 질산코발트 수용액으로부터 침전하여 얻었으며 binder인 ethylene glycol과 혼합하여 알루미나 기판상에 후막을 인쇄하였다. 제조된 후막에 대해 binder 함량 및 열처리 조건에 따른 부탄가스의 감도 및 회복성을 조사하였다. 동작 온도 $250^{\circ}C$에서 15% ethylene glycol을 함유한 $Co_{3}O_{4}$ 분말을 $300^{\circ}C$ 에서 24시간 동안 열처리한 소자가 부탄가스에 대하여 최고의 감도를 나타내었다. 감도는 500ppm 부탄가스에 대하여 1.1 정도로, 동작 온도 $350{\sim}400^{\circ}C$에서 상용 $SnO_{2}$ 가스 감지 소자의 감도 $0.8{\sim}0.85$와 비교할 때 매우 높았다. 응답 특성은 매우 좋았으나 회복성은 나쁜 것으로 나타났다.

  • PDF

기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성 (Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors)

  • 김선훈;박신철;김진혁;문종하;이병택
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.