CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.
본 논문에서는 이진영상과 이진커널을 사용하여 컨볼루션, 풀링, ReLU 연산을 수행하는 이진 CNN 연산 알고리즘을 제안한다. 256 그레이스케일 영상을 8개의 비트평면으로 분해하고, -1과 1로 구성되는 이진커널을 사용하는 방법이다. 이진영상과 이진커널의 컨볼루션 연산은 가산과 감산으로 수행한다. 논리적으로는 XNOR 연산과 비교기로 구성되는 이진연산 알고리즘이다. ReLU와 풀링 연산은 각각 XNOR와 OR 논리연산으로 수행한다. 본 논문에서 제안한 알고리즘의 유용성을 증명하기 위한 실험을 통해, CNN 연산을 이진 논리연산으로 변환하여 수행할 수 있음을 확인한다. 이진 CNN 알고리즘은 컴퓨팅 파워가 약한 시스템에서도 딥러닝을 구현할 수 있는 알고리즘으로 스마트 폰, 지능형 CCTV, IoT 시스템, 자율주행 자동차 등의 임베디드 시스템에서 다양하게 적용될 수 있는 시스템이다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.364-373
/
2022
Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.
해상 안보, 국제 동향 파악 등 다양한 이유로 해상 사진에서 선박을 탐지하고자하는 연구는 지속되어 왔다. 인공지능의 발달로 인해 사진 및 영상 내 객체 탐지를 위한 R-CNN 모델이 등장하였고 객체탐지의 성능이 비약적으로 상승하였다. R-CNN 모델을 이용한 해상 사진에서의 선박 탐지는 인공위성 사진에도 적용되기 시작하였다. 하지만 인공위성 사진은 넓은 지역을 투사하기 때문에 선박 외에도 차량, 지형, 건물 등 다양한 객체들이 선박으로 인식되는 경우가 있다. 본 논문에서는 R-CNN계열 모델을 이용한 인공위성 사진에서의 선박 탐지의 성능을 개선하기 위한 새로운 방법론을 제안한다. 표지자 기반 watershed 알고리즘을 통해 육지와 바다를 분리하고 morphology 연산을 수행하여 RoI를 한 차례 더 특정한 뒤 특정된 RoI에 R-CNN 계열 모델을 사용하여 선박을 탐지하여 오탐을 줄인다. 해당 방법을 이용하여 Faster R-CNN을 사용하였을 경우, Faster R-CNN만을 사용했을 때에 비해 오탐률을 80% 줄일 수 있었다.
본 논문은 딥 컨볼루션 뉴럴 네트워크(CNN)를 이용하여 행 별로 서로 다른 노출로 촬영된 단일 영상을 HDR 영상으로 변환하는 기법을 제안한다. 제안하는 알고리즘은 먼저 입력 영상에서 저조도 또는 포화로 인해 발생하는 정보 손실 영역을 CNN을 이용하여 복원하여 휘도맵을 생성한다. 또한, CNN 학습 과정에서 인간의 시각 인지 특성을 고려할 수 있는 손실 함수를 제안한다. 마지막으로 복원된 휘도맵에 디모자이킹 필터를 적용하여 최종 HDR 영상을 획득한다. 컴퓨터 모의실험을 통해 제안하는 알고리즘이 기존의 기법에 비해서 높은 품질의 HDR 영상을 취득하는 것을 확인한다.
CNN-UM의 아날로그 연산기능을 활용할 수 있는 영상 변화 검출 알고리즘을 개발하였으며 이를 이동물체 검출에 활용하였다. CNN-UM은 영상의 아날로그 병렬처리가 가능한 구조이므로 고속의 실시간 처리가 필요한 분야에는 매우 높은 응용성을 가진 새로운 구조의 아날로그 및 로직처리(아나로직) 프로세서이다. 이 CNN-UM은 동일 영상 프레임 내에서의 처리에는 능률적인 구조이지만 영상 프레임 간의 계산에는 아날로그 병렬처리 기능을 활용하기 어려운 연산구조라는 단점이 있었다. 본 연구에서는 셀의 상태 저장 커패시터에 인접 프레임의 영상들을 상호 역 부호를 통하여 중첩함으로써 영상 프레임 간의 변화 검출을 병렬로 수행할 수 있는 알고리즘을 개발하였으며 이 원리를 전기적 등가회로를 통해 해석하였다. 또한, 개발한 알고리즘을 이동물체 검출을 위한 프레임간의 영상 변화 검출에 적용하여 타당성을 확인하였다.
In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.
Excellent apparel design can increase market competitiveness. This article briefly introduced the theory of fractals and its application in the field of apparel design. The convolutional neural network (CNN) algorithm was used to assist in the evaluation of apparel designs. In the case analysis, the accuracy of the evaluation was validated by comparing the CNN algorithm with two other intelligent algorithms, support vector machine (SVM) and back propagation (BP). The evaluation of the proposed design showed that compared with SVM and BP algorithms, the CNN algorithm had higher accuracy in evaluating apparel designs. The evaluation result of the proposed apparel design not only further verifies the effectiveness of the CNN algorithm, but also demonstrates that the theory of fractals can be effectively applied in apparel design to provide more innovative designs.
본 논문은 사용자들에 의해 촬영된 피부이미지를 가공하여 데이터 세트를 구축하고, 제안한 영상처리 기법에 의해 모공 특징이미지를 생성하여, CNN(Convolution Neural Network) 모델 기반의 모공 상태 등급 예측 시스템을 구현한다. 본 논문에서 활용하는 피부이미지 데이터 세트는, 피부미용 전문가의 육안 분류 기준에 근거하여, 모공 특징에 대한 등급을 라벨링 하였다. 제안한 영상처리 기법을 적용하여 피부이미지로 부터 모공 특징 이미지를 생성하고, 모공 특징 등급을 예측하는 CNN 모델의 학습을 진행하였다. 제안한 CNN 모델에 의한 모공 특징은 전문가의 육안 분류 결과와 유사한 예측 결과를 얻었으며, 비교 모델(Resnet-50)에 의한 결과보다 적은 학습시간과 높은 예측결과를 얻었다. 본 논문의 본론에서는 제안한 영상처리 기법과 CNN 적용의 결과에 대해 서술하며, 결론에서는 제안한 방법에 대한 결과와 향후 연구방안에 대해 서술한다.
Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.