• Title/Summary/Keyword: CNFs

Search Result 74, Processing Time 0.02 seconds

Crystallinity of Low Molar Ratio Urea-Formaldehyde Resins Modified with Cellulose Nanomaterials

  • PARK, Seongsu;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.169-180
    • /
    • 2021
  • Inherent crystalline domains present in low formaldehyde to urea (F/U) molar ratio urea-formaldehyde (UF) resins are responsible for their poor adhesion in wood-based composite panels. To modify the crystallinity of low molar ratio (LMR) UF resins, this study investigates the additional effect of cellulose nanomaterials (CNMs), such as cellulose microfibrils (CMFs), cellulose nanofibrils (CNFs), and TEMPO-oxidized CNFs (TEMPO-CNFs) on the crystallinity of modified LMR UF resins. First, two modification methods (post-mixing and in situ) were compared for modified LMR UF resins with TEMPO-CNFs. The modified UF resins with TEMPO-CNFs decreased the nonvolatile solid contents, while increasing the viscosity and gel time. However, the in situ modification of UF resins with TEMPO-CNFs showed lower crystallinity than that of post-mixing. Then, the in situ method was compared for all CNMs to modify LMR UF resins. The modified UF resins with CMFs using the in situ method increased nonvolatile solid contents and viscosity but decreased the gel time. The crystallinity of UF resins modified with TEMPO-CNFs was the lowest even though the crystalline domains were not significantly changed for all modified UF resins. These results suggest that these CNMs should be modified to prevent the formation of crystalline domains in LMR UF resins.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Effect of Carbon Nanofiber Structure on Crystallization Kinetics of Polypropylene/Carbon Nanofiber Composites

  • Lee, Sung-Ho;Hahn, Jae-Ryang;Ku, Bon-Cheol;Kim, Jun-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2369-2376
    • /
    • 2011
  • Effect of heat treatment of carbon nanofibers (CNF) on electrical properties and crystallization behavior of polypropylene was reported. Two types of CNFs (untreated and heat treated at 2300 $^{\circ}C$) were incorporated into polypropylene (PP) using intensive mixing. A significant drop in volume resistivity was observed with composites containing untreated 5 wt % and heat treated 3 wt % CNF. In non-isothermal crystallization studies, both untreated and heat treated CNFs acted as nucleating agents. Composites with heat treated CNFs showed a higher crystallization temperature than composites with untreated CNFs did. TEM results of CNF revealed that an irregular structure of CNFs can be converted into the continuous graphitic structure after heat treatment. Furthermore, STM showed that the higher carbonization temperature leads to the higher graphite degree which presents the larger carbon network size, suggesting that a more graphitic structure of CNFs led to a higher crystallization temperature of PP.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Methanol Electro-Oxidation Properties of Pt Electro-Catalysts Embedded by Porous Carbon Nanofiber Supports (다공성 탄소나노섬유 지지체에 담지된 백금촉매의 메탄올 산화 특성 연구)

  • Sin, Dong-Yo;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2015
  • To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co-acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer-Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro-oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/C(40 wt% Pt on Vulcan carbon, E-TEK).

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Electric Device Character and fabrication of advanced thin film including nano particles (나노입자가 내장된 기능성 박막의 제작과 전자소자 특성)

  • Ryu, Jeong-Tak;Ikuno, T;Honda, S.;Katayama, M.;Oura, K.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.66-71
    • /
    • 2006
  • Carbon nanofibers have synthesized a low temperature using DC Ar plasma and Fe-Phthalocyanine, and a characteristic difference of the synthesized CNF according to the location of the substrate was investigated. The carbon nanofibers had about 100nm diameter and up to $10{\mu}m$ length. These were grown in random orientation. There are two shapes in the CNFs, screw and straight line shapes. Furthermore, we found the selective growth of nanofibers on the scratched substrates. The density of CNFs synthesized on the position (a) were higher than that synthesized on the position (b) [See the Fig. 2]. Also, the length of CNFs was different. In the shape, CNFs with screw and straight line shape were synthesized in the position (a), but. only CNFs with straight line shape were synthesized in the position (b). The difference have an important effect on the field emission characteristics.

  • PDF

Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile

  • Nataraj, S.K.;Kim, B.H.;Yun, J.H.;Lee, D.H.;Aminabhavi, T.M.;Yang, K.S.
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.108-114
    • /
    • 2008
  • We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at $1000^{\circ}C$. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Development of new heat dissipated material in metal core PCB for LED backlight source

  • Ban, K.Y.;Lee, D.Y.;Lee, M.J.;Han, C.J.;Han, J.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1432-1435
    • /
    • 2006
  • We report on carbon nano-fibers (CNFs) for applying to epoxy as a highly thermal conductive adhesive. In order to fabricate CNFs, electro-spinning process was performed with polyacrylonitrile (PAN) solutions. The sample was stabilized at the annealing temperature of $360^{\circ}C$, and carbonized from 900 to $1100^{\circ}C$. It is shown that the synthesized CNFs have a good thermal conductivity of several hundred W/m K. LED backlight units (BLUs) fabricated with MPCB using CNF-mixed epoxy give a better heat dissipation and higher performance than normal LED BLUs. On the basis of SEM, XRD, and FTIR, the characteristics of CNFs are described.

  • PDF