• Title/Summary/Keyword: CNF

Search Result 132, Processing Time 0.019 seconds

Phylogenetic Groups and Virulence Factors of Escherichia coli Causing Urinary Tract Infection in Children (소아 요로감염의 원인 Escherichia coli 균의 계통 분류와 독성인자 분석)

  • Kim, Ji Mok;Cho, Eun Young;Lee, Jae Ho
    • Pediatric Infection and Vaccine
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2015
  • Purpose: Urinary tract infection (UTI) is a common bacterial infection in children and Escherichia coli is a predominant pathogen. The purpose of this study is to evaluate phylogenetic groups and virulence factors of E. coli causing UTI in children in Korea. Methods: From October 2010 to April 2013, urinary E. coli strains were isolated from the 33 pediatric patients of UTI. Multiplex polymerase chain reactions were performed to evaluate the phylogenetic groups and 5 virulence factor genes (fimH, sfa, papA, hylA, and cnf1) of E. coli. Distribution of molecular characteristics of E. coli was analyzed by clinical diagnosis and accompanying vesicoureteral reflux (VUR). Results: Most (84.8%) uropathogenic E. coli were belonged to phylogenetics group B2 and the others (15.2%) were belonged to group D. The virulence factors were distributed as: fimH (100%), sfa (100%), hylA (63.6%), cnfI (63.6%), and papA (36.4%). According to clinical diagnosis, phylogenetic distribution of E. coli strain was 92.3% of B2 and 7.7% of D in acute pyelonephritis and 57.1% of B2 and 42.9% of D in cystitis. Distribution of virulence factors was similar in both groups. In patients with acute pyelonephritis, phylogenetic distribution was similar in VUR and non-VUR group, but proportion of papA genes were lower in VUR group than that of non-VUR group (43.8% vs. 20.0%, P=0.399). Conclusions: This study provides current epidemiologic molecular data of E. coli causing pediatric UTI in Korea and will be a fundamental for understanding the pathogenesis of pediatric UTI.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element (유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성)

  • Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.405-411
    • /
    • 2015
  • Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Mechanical Property of Cabon Nanofiber/Polypropylene Composites by Melt-mixing Process (압출공정에 의한 탄소나노섬유/폴리프로필렌 복합재료의 기계적 특성)

  • Byeon, Jun-Hyeong;Lee, Sang-Gwan;Eom, Mun-Gwan;Min, Gyeong-Sik;Song, Jae-Eun;Lee, Chang-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.125-128
    • /
    • 2005
  • The dispersion of carbon nanofiber (CNF) was carried out by solution blending, mechanical mixing, and sonication. CNFs at levels of 5-50% fiber weight content were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked uni-directionally in the mold cavity for the compression molding. For the evaluation of mechanical properties of nanocomposites, tension, in-plane shear, and flexural tests were conducted. CNF/PP composites clearly showed reinforcing effect in the longitudinal direction. The tensile modulus and strength have improved by 100% and 40%, respectively for 50 % fiber weight content, and the flexural modulus and strength have increased by 120% and 25%, respectively for the same fiber weight content. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. However, the property enhancement was not significant due to the poor adhesion between fiber and matrix. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added.

  • PDF

Electrochemical Energy Storage of Milled Carbon Nanofiber (탄소나노섬유의 밀링에 따른 전기화학적 에너지 저장 특성)

  • Lee, Hye-Min;Jeon, Hyeon;Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • CNFs had been well addressed due to numerous promising applications in science and technology. Besides the same physicochemical properties of ordinary carbon materials such as active carbons and carbon black, they exhibit specific, e.g., tubular or fibrous structures, a large surface area, high electrical conductivity stability, as well as extremely high mechanical strengh and modulus, which make them a superior material for electrochemical capacitors. In this study, CNFs were pretreated by mechanical milling with different time in mortar and pestle. The milled CNFs were used as active material of electrode whose electrochemical property was tested to find physicochemical characterization variation. CNF electrode milled for 5 min has the highest electric capacitance. XPS spectrum were employed to explore changes in functional group induced from mechanical milling. Crystal size was calculated to analyze change of peak from different milling time by XRD. The CNF milled for 5 min has the largest crystal size and the highest electric capacitance.

Bounded Model Checking BIR Model (BIR 모델의 바운디드 모델 검증)

  • Cho, Min-Taek;Lee, Tae-Hoon;Kwon, Gi-Hwon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.743-751
    • /
    • 2007
  • Model checking has been successfully applied to hardware verification. Software is more subtle than hardware with respect to formal verification due to its infinite state space. Although there are many research activities in this area, bounded model checking is regarded as a promising technique. Bounded model checking uses an upper bound to unroll its model, which is the main advantage of bounded model checking compared to other model checking techniques. In this paper, we applied bounded model checking to verify BIR which is the input model for the model checking tool BOGOR. Some BIR examples are verified with our technique. Experimental results show that bounded model checking is better than explicit model checking provided by BOGOR. This paper presents the formalization of BIR and the encoding algorithm of BIR into CNF.

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

Effect of biofibers addition on the structure and properties of soy protein composite films

  • Ye Eun Kim;Su Jin Kim;Yong-Il Chung;Chae Hwa, Kim;Tae Hee Kim;In Chul Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • Soy protein isolate (SPI) has garnered researchers' attention due to its abundance, costeffectiveness, excellent biocompatibility, hemo-compatibility, and biodegradability. However, SPI faces limitations in application due to poor processability and weak mechanical strength. Substantial efforts have been made to address these challenges. In this preliminary study, glycerol and biofibers were added to SPI to improve the mechanical properties and film forming, and glyoxal was employed to crosslink SPI molecules. The microstructure and mechanical properties of the resulting SPI/composite films were evaluated. A 15% addition of glycerol proved sufficient for good film formation. Among the biofibers, short SF microfibers were the most effective in enhancing breaking strength, while TEMPO-oxidized CNF (cellulose nanofiber) excelled among CNFs. Crosslinking with glyoxal significantly enhanced the mechanical properties, with the type of biofiber minimally affecting the mechanical properties of the crosslinked SPI composite films.

Comparison of Virulence Factors, Phylogenetic Groups and Ciprofloxacin Susceptibility of Escherichia coli Isolated from Healthy Students and Patients with Urinary Tract Infections in Korea

  • Park, Min;Park, Soon-Deok;Kim, Sa-Hyun;Woo, Hyun-Jun;Lee, Gyu-Sang;Kim, Hyun-Woo;Yang, Ji-Young;Cho, Eun-Hee;Uh, Young;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • Urinary tract infection (UTI) is one of the most common bacterial infections and is predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC strains generally possess several genes encoding virulent factors, which are mostly adhesins, toxins, bacteriocin and siderophores. E. coli is composed of four main phylogenetic group (A, B1, B2, D) and virulent extra-intestinal strains mainly belong to groups B2 and D. Prescription of ciprofloxacin, a kind of fluoroquinolone group antibiotics, is increasing now a days, but resistance to this drug is also increasing. A total of 188 strains of E. coli were collected. Thirteen strains were collected from healthy students in 2011 and 175 strains from patients with urinary tract infection in 2010. Virulence factor genes (papC, fimG/H, sfaD/E, hlyA, cnf1, and usp) were amplified by polymerase chain reaction (PCR) methods for phylogenetic group (A, B1, B2, D) detection. Ciprofloxacin susceptibility test was performed by disk diffusion method. The identified virulence factors (VFs), phylogenetic groups and ciprofloxacin resistance in 13 E. coli strains isolated from healthy students were papC (15.4%), fimG/H (76.9%), sfaD/E (30.8%), hlyA (23.1%), cnf1 (23.1%), usp (7.7%), phylogenetic group A (23%), B1 (8%), B2 (46%), D (23%) and ciprofloxacin resistance (7.7%), while those of in 175 E. coli strains isolated from patients with UTI were papC (41.1%), fimG/H (92.5%), sfaD/E (30.3%), hlyA (10.3%), cnf1 (30.3%), usp (27.4%), phylogenetic group A (9.1%), B1 (5.1%), B2 (60.6%), D (25.1%) and ciprofloxacin resistance (29.7%). In this study, 10 out of 13 E. coli strains (76.9%) from healthy students were found to possess more than one virulence factor associated with adhesion. In addition, one E. coli strain isolated from healthy students who had never been infected with UPEC showed ciprofloxacin resistance. According to these results between the virulence factors and phylogenetic groups it was closely associated, and UPEC strains isolated from patients showed high level of ciprofloxacin resistance.