• Title/Summary/Keyword: CMOS Process

Search Result 1,650, Processing Time 0.035 seconds

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

High voltage MOSFET fabricated by using a standard CMOS logic process to drive the top emission OLEDs in silicon-based OELDs

  • Lee, Cheon-An;Kwon, Hyuck-In;Jin, Sung-Hun;Lee, Chang-Ju;Lee, Myung-Won;Kyung, Jae-Woo;Cho, Il-Whan;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.981-983
    • /
    • 2003
  • Using the conventional standard CMOS logic process, the high voltage MOSFET to drive top emission OLEDs was fabricated for the silicon-based organic electroluminescent display. The drift region of the conventional high voltage MOSFET was implemented by the n-well of the logic process. The measurement result shows a good saturation characteristic up to 50 V without breakdown phenomena.

  • PDF

A High Swing Range, High Bandwidth CMOS PGA and ADC for IF QPSK Receiver Using 1.8V Supply

  • Lee, Woo-Yol;Lim, Jong-Chul;Park, Hee-Won;Hong, Kuk-Tae;Lee, Hyeong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • This paper presents a low voltage operating IF QPSK receiver block which is consisted of programmable gain amplifier (PGA) and analog to digital converter. This PGA has 6 bit control and 250MHz bandwidth, $0{\sim}20\;dB$ gain range. Using the proposed PGA architecture (low distortion gain control switch block), we can process the continuous fully differential $0.2{\sim}2.5Vpp$ input/output range and 44MHz carrier with 2 MHz bandwidth signal at 1.8V supply voltage. Using the sub-sampling technique (input freq. is $44{\sim}46MHz$, sampling freq. is 25MHz), we can process the IF QPSK signal ($44{\sim}46MHz$) which is the output of the 6 bit PGA. We can get the SNDR 35dB, which is the result of PGA and ADC at full gain mode. We fabricated the PGA and ADC and the digital signal processing block of the IF QPSK with the 0.18um CMOS MIM process 1.8V Supply.

A Study of $Sb_2O_3$ Beam Tuning for SSR Channel on Bi-CMOS Process (Bi-CMOS공정중 SSR 채널 형성을 위한 $Sb_2O_3$ 빔튜닝 방법 연구)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.369-372
    • /
    • 2004
  • The characteristics of antimony implants are relatively well-known. Antimony has lower diffusion coefficient, shorter implantation range, and smaller scattering as compared with conventional dopants such as phosphorous and arsenic. It has been commonly used in the doping of buried layer in Bi-CMOS process. In this paper, characteristics and appropriate condition of monitoring in antimony implant beam tuning using $Sb_2O_3$ were investigated to get a reliable process. TW(Thema Wave) and Rs(Sheet Resistance) test were carried out to set up condition of monitoring for stable operation through the periodic inspection of instruction condition. The monitoring was progressed at the point that the slant of Rs varied significantly to investigate the variation of instruction accurately.

  • PDF

A Time-to-Digital Converter with PVT Variation Compensation Capability (PVT 변화 보상 기능을 가지는 시간-디지털 변환기)

  • Eunho Shin;Jongsun Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.234-238
    • /
    • 2023
  • In this paper, we propose a time-to-digital converter (TDC) with compensation capability for PVT (process, voltage, and temperature) variations. A typical delay line-based TDC measures time based on the inverter's propagation delay, making it fundamentally sensitive to PVT variations. This paper presents a method to minimize the resolution change of TDC by compensating for the propagation delay caused by the PVT variations. Additionally, it dopts Cyclic Vernier TDC (CVTDC) structure to provide a wide input detection range. The proposed CVTDC with PVT compensation function is designed using a 45nm CMOS process, consumes 8mW of power, offers a TDC resolution of 5 ps, and has an input detection range of about 5.1 ns.

Design of a step-up DC-DC Converter using a 0.18 um CMOS Process (0.18 um CMOS 공정을 이용한 승압형 DC-DC 컨버터 설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.715-720
    • /
    • 2016
  • This paper proposes a PWM (Pulse Width Modulation) voltage mode DC-DC step-up converter for portable devices. The converter, which is operated with a 1 MHz switching frequency, is capable of reducing the mounting area of passive devices, such as inductor and capacitor, and is suitable for compact mobile products. This step-up converter consists of a power stage and a control block. The circuit elements of the power stage are an inductor, output capacitor, MOS transistors Meanwhile, control block consist of OPAMP (operational amplifier), BGR (band gap reference), soft-start, hysteresis comparator, and non-overlap driver and some protection circuits (OVP, TSD, UVLO). The hysteresis comparator and non-overlapping drivers reduce the output ripple and the effects of noise to improve safety. The proposed step-up converter was designed and verified in Magnachip/Hynix 0.18um 1-poly, 6-metal CMOS process technology. The output voltage was 5 V with a 3.3 V input voltage, output current of 100 mA, output ripple less than 1% of the output voltage, and a switching frequency of 1 MHz. These designed DC-DC step-up converters could be applied to the Personal Digital Assistants(PDA), cellular Phones, Laptop Computer, etc.

60 GHz WPAN LNA and Mixer Using 90 nm CMOS Process (90 nm CMOS 공정을 이용한 60 GHz WPAN용 저잡음 증폭기와 하향 주파수 혼합기)

  • Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Kim, Kwang-Seon;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • In this paper, the design and implementation of LNA and down-mixer using 90 nm CMOS process are presented for 60 GHz band WPAN receiver. In order to extract characteristics of the transistor used to design each elements under the optimum bias conditions, the S-parameter of the manufactured cascode topology was measured and the effect of the RF pad was removed. Measured results of 3-stages cascode type LNA the gain of 25 dB and noise figure of 7 dB. Balanced type down-mixer with a balun at LO input port shows the conversion gain of 12.5 dB within IF frequency($8.5{\sim}11.5\;GHz$) and input PldB of -7 dBm. The size and power consumption of LNA and down-mixer are $0.8{\times}0.6\;mm^2$, 43 mW and $0.85{\times}0.85\;mm^2$, 1.2 mW, respectively.

A Wideband ${\Delta}{\Sigma}$ Frequency Synthesizer for T-DMB/DAB/FM Applications in $0.13{\mu}m$ CMOS (T-DMB/DAB/FM 수신기를 위한 광대역 델타시그마 분수분주형 주파수합성기)

  • Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.75-82
    • /
    • 2010
  • This paper presents a wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer for a multi-band single chip CMOS RFIC transceivers. A wideband VCO utilizes a 6-bit switched capacitor array bank for 2340~3940 MHz frequency range. VCO frequency calibration circuit is designed for optimal capacitor bank code selection before phase locking process. It finishes the calibration process in $2{\mu}s$ over the whole frequency band. The LO generation block has selectable multiple division ratios of ${\div}2$, ${\div}16$, and ${\div}32$ to generate LO I/Q signals for T-DMB/DAB/FM Radio systems in L-Band (1173~1973 MHz), VHF-III (147~246 MHz), VFH-II (74~123 MHz), respectively. The measured integrated phase noise is quite low as it is lower than 0.8 degree RMS over the whole frequency band. Total locking time of the ${\Delta}{\Sigma}$ frequency synthesizer including VCO frequency calibration time is less than $50{\mu}s$. The wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer is fabricated in $0.13{\mu}m$ CMOS technology, and it consumes 15.8 mA from 1.2 V DC supply.

Fabrication of High-Frequency Packages for K-Band CMOS FMCW Radar Chips Using RF Via Structures (RF 비아 구조를 이용한 K-대역 CMOS FMCW 레이더 칩용 고주파 패키지의 제작)

  • Shin, Im-Hyu;Park, Yong-Min;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1228-1238
    • /
    • 2012
  • In this paper, we design, fabricate and measure two kinds of high-frequency packages for K-band CMOS FMCW radar chips using RF via structures. The packages are fabricated with the conventional PCB process and LTCC process. The design centering of the packages is performed at 24 GHz and impedance variation caused by the wire bonding and RF via structure is fully evaluated using 3D electromagnetic simulation. The RF via structure with characteristic impedance of $50{\Omega}$ is used to reduce impedance mismatch loss. Two kinds of test packages with back-to-back connected RF paths are fabricated and measured for the design verification of the PCB-based package and LTCC package. Their measured results show an insertion loss of less than 0.4 dB at 24 GHz and less than 0.5 dB for 20~29 GHz. The measured return loss is less than -13 dB for the PCB-based package and less than -15 dB for the LTCC package in the frequency band, but the return loss of the package itself is predicted to be better than that of the test package by about 5 dB, because the ripples of the back-to-back connection typically degrade the return loss by 5 dB or more.