• Title/Summary/Keyword: CMG

Search Result 71, Processing Time 0.02 seconds

Design Criteria and Cluster Configuration Improvement of Single Gimbal Control Moment Gyros for Satellite (인공위성을 위한 제어모멘트자이로의 설계시 고려요소 및 배치형상 개선방안)

  • Seo, Hyun-Ho;Rhee, Seung-Wu;Lee, Seon-Ho;Oh, Shi-Hwan;Yim, Jo-Ryeong;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.48-56
    • /
    • 2008
  • Nowadays, CMG(Control Moment Gyros) becomes one of the essential actuators for satellite attitude control. The method to define the key requirements of CMG is suggested to avoid CMG's singularity problem for the limited envelope of angular momentum of 2H. Furthermore, the analysis and simulation are carried out to provide a necessary guideline when three CMGs are used for spacecraft control purpose. An improved configuration of redundant four CMG cluster, slightly different from the conventional configuration, is proposed not only to avoid the CMG singularity problem, but to improve agility about roll or pitch-axis.

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

Development of CMG Ground Simulator using Torque Sensor (토크센서를 이용한 CMG의 지상 시뮬레이터 개발)

  • Kim, Seung-Hyeon;Lee, Seung-Mok;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • CMG cluster which consists of four CMGs can be used to produce 3-axis torque. There are many issues that we have to investigate and validate when CMG cluster itself is developed. Thus, its ground validation and verification processes are essential. Therefore, CMG simulator which uses a torque sensor to calculate satellite attitude is proposed in this paper. Update and kalman filter are also proposed for gimbal angle problem occurred in development. The first way uses a calculated gimbal angle as a primary and a sensor angle as a scondary to reduce error. Also, the test results of specific CMG steering law as well as attitude control logic are presented as an example.

Identification of Genes Involved in Decolorization of Crystal Violet and Malachite Green in Citrobacter sp. (Citrobacter sp.에서 crystal violet와 malachite green 색소분해에 관여하는 유전자들의 동정)

  • Lee, Young-Mi;Jang, Moon-Sun;Kim, Seok-Jo;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • To identify genes involved in the decolorization of both crystal violet and malachite green, we isolated random mutants generated by transposon insertion in triphenylmethane-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 14 mutants with complete defect in color removal capability of both crystal violet and malachite green. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 5 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein products encoded by cmg genes were identified as follows. cmg 2 is MaIC protein in maltose transport system; cmg 6 is transcriptional regulator (LysR-type): cmg 12 is a putative oxidoreductase. The sequences deduced from two cmg genes, cmg 8 and cmg 11, showed no significant similarity to any protein with a known function. Therefore, these results indicate that these two cmg genes encode unidentified proteins responsible for decolorization of both crystal violet and malachite green.

Analysis of Attitude Control Characteristics for an Underactuated Spacecraft Using a Single-Gimbal Variable-Speed CMG (1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 특성 분석)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has one single-gimbal variable-speed CMG. An underactuated spacecraft may not converge to arbitrary attitudes if its total angular momentum is not zero. To stabilize a spacecraft, the CMG has to align with the angular momentum in the inertial frame. Four different install configurations for the CMG have been considered and controllable angular momentums have been analyzed. Also, based on the backstepping method, stabilizing control laws have been presented and their properties have been compared.

Low Cost Small CMG Performance Test and Analysis (저가 소형 CMG 성능시험 및 분석)

  • Rhee, Seung-Wu;Kwon, Hyoek-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.543-552
    • /
    • 2011
  • Control Moment Gyro(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and CMG is very essential device for agile satellite. In this study, the essential dynamic equation for the design of gimbal motor and wheel motor is summarized. The development process of SGCMG hardware for agile small satellite system, the description of developed hardware and its performance test results are presented. Test result shows that the developed hardware model can produce an output torque more than 1.2Nm as designed. Other test items are max. torque, gimbal bandwidth, minimum torque, torque error, gimbal rate error.

Secretion of Pem-CMG, a Peptide in the CHH/MIH/GIH Family of Penaeus monodon, in Pichia pastoris Is Directed by Secretion Signal of the α-Mating Factor from Saccharomyces cerevisiae

  • Treerattrakool, Supattra;Eurwilaichitr, Lily;Udomkit, Apinunt;Panyim, Sakol
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.476-481
    • /
    • 2002
  • The CHH/MIH/GIH peptide family of black tiger prawn (Paneaus monodon) is important in shrimp reproduction and growth enhancement. In this study, the cDNA that encodes the complete peptide that is related to the CHH/MIH/GIH family (so-called, Pem-CMG) in the eyestalk of P. monodon was successfully expressed in a methylotrophic yeast Pichia pastoris under the control of an alcohol oxidase promoter. In order to obtain the secreted Pem-CMG, a secretion signal of either the Saccharomyces cerevisiae $\alpha$-factor or Pem-CMG was employed. The results demonstrated that ${\alpha}Pem$-CMG, either with (${\alpha}2EACMG$) or without (${\alpha}CMG$) the Glu-Ala repeats, was secreted into the medium, while Pem-CMG with its own secretion signal failed to be secreted. The total protein amount that was secreted from the transformant that contained either ${\alpha}2EACMG$ or ${\alpha}CMG$ was approximately 60 mg/l and 150 mg/l, respectively. The N-terminus of the Pem-CMG peptide of both ${\alpha}2EACMG$ and ${\alpha}CMG$ was correctly processed. This produced the mature Pem-CMG peptide.

c-CMG Cluster for Small Satellites

  • Lee, Seung-Mok;Seo, Hyun-Ho;Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.105-114
    • /
    • 2007
  • This article presents the details of a designed control moment gyroscope (CMG) with a constant speed momentum wheel and one-axis-gimbal, and its experimental results performed at Korea Aerospace Research Institute. The CMG which is able to produce a torque of lOO mNm per each, is mounted in a pyramid configuration with four SGCMGs. Each CMG test and a single axis maneuver test with four-CMG cluster configuration are performed to confirm their performance on a ground-test facilities consisted of three major parts: a vibration isolation system, a dynamic force plate (Kistler sensor), and a DSP board. These facilities provide the accurate data of three axial and torques from the control moment gyro. Details of the CMG experimental results are presented with discussion of the experimental errors. The experimental data are compared with theoretical results and both results are used to verify their performance specifications.

Development of 0.6Nm Small CMG Hardware and Performance Test (0.6Nm급 소형 CMG 하드웨어 개발 및 성능시험)

  • Jang, Woo-Young;Rhee, Seung-Wu;Kwon, Hyoek-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.933-942
    • /
    • 2010
  • Control Moment Gyro(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and CMG is very essential device for agile satellite. And the studies of CMG development and its application to satellite have been done extensively. In this study, the development process of SGCMG hardware for agile small satellite system, the developed hardware and its performance test results are presented. As a SGCMG test results, it is verified that the developed hardware model can produce torque more than 0.6Nm as is designed. By investigating its test data results, the issues that should be considered for the performance improvement and its application are discussed. The remedies for the identified issues are proposed for future study.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.