• Title/Summary/Keyword: CME-driven storm

Search Result 7, Processing Time 0.02 seconds

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.

Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms (Sawtooth 진동 현상과 지자기 폭풍의 통계적 관계)

  • Kim, Jae-Hun;Lee, Dae-Young;Choi, Cheong-Rim;Her, Young-Tae;Han, Jin-Wook;Hong, Sun-Hak
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2008
  • We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME) and Co-rotating Interaction Region (CIR). Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME $({\sim}62%)$ than for storms driven by CIR $({\sim}30%)$. In addition, sawtooth oscillations occurred mainly $({\sim}82%)$ in the main phase of storms for CME-driven storms while they occurred mostly $({\sim}78%)$ during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to -15 to 0 nT and the solar wind speed was in the range of $400{\sim}700km/s$. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS

  • Cho, K.S.;Marubashi, K.;Kim, R.S.;Park, S.H.;Lim, E.K.;Kim, S.J.;Kumar, P.;Yurchyshyn, V.;Moon, Y.J.;Lee, J.O.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.2
    • /
    • pp.29-39
    • /
    • 2017
  • We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.

A STATISTICAL ANALYSIS OF SOLAR WIND DYNAMIC PRESSURE PULSES DURING GEOMAGNETIC STORMS (지자기폭풍 기간 동안의 태양풍 동압력 펄스에 관한 통계적 분석)

  • Baek, J.H.;Lee, D.Y.;Kim, K.C.;Choi, C.R.;Moon, Y.J.;Cho, K.S.;Park, Y.D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.419-430
    • /
    • 2005
  • We have carried out a statistical analysis on solar wind dynamic pressure pulses during geomagnetic storms. The Dst index was used to identify 111 geomagnetic storms that occurred in the time interval from 1997 through 2001. We have selected only the events having the minimum Dst value less than -50 nT. In order to identify the pressure impact precisely, we have used the horizontal component data of the magnetic field H (northward) at low latitudes as well as the solar wind pressure data themselves. Our analysis leads to the following results: (1) The enhancement of H due to a pressure pulse tends to be proportional to the magnitude of minimum Dst value; (2) The occurrence frequency of pressure pulses also increases with storm intensity. (3) For about $30\%$ of our storms, the occurrence frequency of pressure pulses is greater than $0.4\#/hr$, implying that to. those storms the pressure pulses occur more frequently than do periodic substorms with an average substorm duration of 2.5 hrs. In order to understand the origin of these pressure pulses, we have first examined responsible storm drivers. It turns out that $65\%$ of the studied storms we driven by coronal mass ejections (CMEs) while others are associated with corotating interaction regions $(6.3\%)$ or Type II bursts $(7.2\%)$. Out of the storms that are driven by CMEs, over $70\%$ show that the main phase interval overlaps with the sheath, namely, the region between CME body and the shock, and with the leading region of a CME. This suggests that the origin of the frequent pressure pulses is often due to density fluctuations in the sheath region and the leading edge of the CME body.

Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

  • Choi, C.R.;Kim, K.C.;Lee, D.Y.;Kim, J.H.;Lee, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.113-128
    • /
    • 2008
  • Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum $(Dst_{min})$ is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ${\geq}50%\;or\;{\geq}3nPa$ within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through $Dst_{min}$, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. $(i){\sim}$ 81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is ${\sim}$ 4.5 pressure enhancement events per storm and ${\sim}$ 0.15 pressure enhancement events per hour. (ii) The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii) Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv) A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF $B_y$ and/or $B_z$: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either $|{\Delta}B_z|>2nT\;or\;|{\Delta}B_y|>2nT$. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

Observational Overview of the May 2024 G5-Level Geomagnetic Storm: From Solar Eruptions to Terrestrial Consequences

  • Young-Sil Kwak;Jeong-Heon Kim;Sujin Kim;Yukinaga Miyashita;Taeyong Yang;Sung-Hong Park;Eun-Kyung Lim;Jongil Jung;Hosik Kam;Jaewook Lee;Hwanhee Lee;Ji-Hyun Yoo;Haein Lee;Ryun-Young Kwon;Jungjoon Seough;Uk-Won Nam;Woo Kyoung Lee;Junseok Hong;Jongdae Sohn;Jaeyoung Kwak;Hannah Kwak;Rok-Soon Kim;Yeon-Han Kim;Kyung-Suk Cho;Jaeheung Park;Jaejin Lee;Hoang Ngoc Huy Nguyen;Madeeha Talha
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.171-194
    • /
    • 2024
  • This study reports comprehensive observations for the G5-level geomagnetic storm that occurred from May 10 to 12, 2024, the most intense event since the 2003 Halloween storm. The storm was triggered by a series of coronal mass ejections (CMEs) originating from the merging of two active regions 13664/13668, which formed a large and complex photospheric magnetic configuration and produced X-class flares in early May 2024. Among the events, the most significant CME, driven by an X2.2 flare on May 9, caught up with and merged with a preceding slower CME associated with an X-class flare on May 8. These combined CMEs reached 1 AU simultaneously, resulting in an extreme geomagnetic storm. Geostationary satellite observations revealed changes in Earth's magnetosphere due to solar wind impacts, increased fluxes of high-energy particles, and periodic magnetic field fluctuations accompanied by particle injections. Extreme geomagnetic storms resulting from the interaction of the solar wind with the Earth's magnetosphere caused significant energy influx into Earth's upper atmosphere over the polar regions, leading to thermospheric heating and changes in the global atmospheric composition and ionosphere. As part of this global disturbance, significant disruptions were also observed in the East Asian sector, including the Korean Peninsula. Ground-based observations show strong negative storm effects in the ionosphere, which are associated with thermospheric heating and resulting in decreases in the oxygen-to-nitrogen ratio (O/N2) in high-latitude regions. Global responses of storm-time prompt penetration electric fields were also observed from magnetometers over the East-Asian longitudinal sector. We also briefly report storm-time responses of aurora and cosmic rays using all-sky cameras and neutron monitors operated by the Korea Astronomy and Space Science Institute (KASI). The extensive observations of the G5-level storm offer crucial insights into Sun-Earth interactions during extreme space weather events and may help establish better preparation for future space weather challenges.