Browse > Article
http://dx.doi.org/10.5303/JKAS.2017.50.2.29

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS  

Cho, K.S. (Korea Astronomy and Space Science Institute)
Marubashi, K. (Korea Astronomy and Space Science Institute)
Kim, R.S. (Korea Astronomy and Space Science Institute)
Park, S.H. (Trinity College Dublin, College Green)
Lim, E.K. (Korea Astronomy and Space Science Institute)
Kim, S.J. (Korea Astronomy and Space Science Institute)
Kumar, P. (Korea Astronomy and Space Science Institute)
Yurchyshyn, V. (Korea Astronomy and Space Science Institute)
Moon, Y.J. (School of Space Research, Kyung Hee University)
Lee, J.O. (Korea Astronomy and Space Science Institute)
Publication Information
Journal of The Korean Astronomical Society / v.50, no.2, 2017 , pp. 29-39 More about this Journal
Abstract
We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.
Keywords
Impact of interplanetary coronal mass ejections on the Earth; 3D structure of interplanetary flux ropes; Forecast of geomagnetic storms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gopalswamy, N., Makela, P., Akiyama, S., Xie, H., Yashiro, S., & Reinard, A. A. 2013, The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs, Sol. Phys., 284, 17   DOI
2 Kim, R.-S., Cho, K.-S., Kim, K.-H., Park, Y.-D., Moon, Y.-J., Yi, Y., et al. 2008, CME Earthward Direction as an Important Geoeffectiveness Indicator, ApJ, 677, 1378   DOI
3 Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Lee, J., Yi, Y., et al. 2010, An Empirical Model for Prediction of Geomagnetic Storms Using Initially Observed CME Parameters at the Sun, JGR, 115, A12108.
4 Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., & Yashiro, S. 2013, Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta, Sol. Phys., 284, 77   DOI
5 Lavraud, B., & Rouillard, A. 2014, Properties and Processes that Influence CME Geo-Effectiveness, Nature of Prominences and Their Role in Space Weather, 300, 273
6 Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17   DOI
7 Liu, Y. D., Yang, Z., Wang, R., Luhmann, J. G., Richardson, J. D., & Lugaz, N. 2014, Sun-to-Earth Characteristics of Two Coronal Mass Ejections Interacting Near 1 AU: Formation of a Complex Ejecta and Generation of a Two-Step Geomagnetic Storm, ApJL, 793, L41   DOI
8 Lugaz, N., & Farrugia, C. J. 2014, A New Class of Complex Ejecta Resulting from the Interaction of Two CMEs and Its Expected Geoeffectiveness, GRL, 41, 769   DOI
9 MacQueen, R. M., Eddy, J. A., Gosling, J. T., Hildner, E., Munro, R. H., Newkirk, G. A., et al. 1974, The Outer Solar Corona as Observed from Skylab: Preliminary Results, ApJL, 187, L85   DOI
10 Marubashi, K., & Lepping, R. P. 2007, Long-Duration Magnetic Clouds: a Comparison of Analyses Using Torus- and Cylinder-Shaped Flux Rope Models, Ann. Geophys., 25, 2453   DOI
11 Marubashi, K., & Cho, K.-S. 2015, Non-Uniqueness of the Geometry of Interplanetary Magnetic Flux Ropes Obtained from Model-Fitting, Sun and Geosphere, 10, 119
12 Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., & Park, Y.-D. 2015, Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources, Sol. Phys., 290, 1371   DOI
13 Meegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., et al. 2009, The Fermi Gamma-Ray Burst Monitor, ApJ, 702, 791   DOI
14 Moon, Y.-J., Cho, K.-S., Dryer, M., Kim, Y.-H., Bong, S.-C., Chae, J., et al. 2005, New Geoeffective Parameters of Very Fast Halo Coronal Mass Ejections, ApJ, 624, 414   DOI
15 Pariat, E., D'emoulin, P., & Berger, M. A. 2005, Photospheric Flux Density of Magnetic Helicity, A&A, 439, 1191   DOI
16 Pevtsov, A. A., & Canfield, R. C. 2001, Solar Magnetic Fields and Geomagnetic Events, JGR, 106, 25191   DOI
17 Schuck, P. W. 2006, Tracking Magnetic Footpoints with the Magnetic Induction Equation, ApJ, 646, 1358   DOI
18 Sheeley, N. R., Howard, R. A., Michels, D. J., Koomen, M. J., Schwenn, R., Muehlhaeuser, K. H., & Rosenbauer, H. 1985, Coronal Mass Ejections and Interplanetary Shocks, JGR, 90, 163
19 Smith, C. W., L'Heureux, J., Ness, N. F., Acuna, M. H., Burlaga, L. F., & Scheifele, J. 1998, The ACE Magnetic Fields Experiment, Space Sci. Rev., 86, 613   DOI
20 Snyder, C. W., Neugebauer, M., & Rao, U. R. 1963, The Solar Wind Velocity and Its Correlation with Cosmic- Ray Variations and with Solar and Geomagnetic Activity, JGR, 68, 6361   DOI
21 Song, H., Yurchyshyn, V., Yang, G., Tan, C., Chen, W., & Wang, H. 2006, The Automatic Predictability of Super Geomagnetic Storms from Halo CMEs Associated with Large Solar Flares, Sol. Phys., 238, 141   DOI
22 Srivastava, N., & Venkatakrishnan, P. 2004, Solar and Interplanetary Sources of Major Geomagnetic Storms during 1996-2002, JGR, 109, A10103   DOI
23 Venkatakrishnan, P., & Ravindra, B. 2003, Relationship between CME Velocity and Active Region Magnetic Energy, GRL, 30, SSC 2-1
24 Wang, Y. M., Ye, P. Z., Wang, S., Zhou, G. P., & Wang, J. X. 2002, A Statistical Study on the Geoeffectiveness of Earth-Directed Coronal Mass Ejections from March 1997 to December 2000, JGR, 107, SSH 2-1
25 Wang, Y. M., Ye, P. Z., & Wang, S. 2003, Multiple Magnetic Clouds: Several Examples during March-April 2001, JGR, 108, SSH 6-1
26 Webb, D. F. 2002, CMEs and the Solar Cycle Variation in Their Geoeffectiveness, Proceedings of the SOHO 11 Symposium on From Solar Min to Max, 508, 409
27 Yermolaev, Y. I., & Yermolaev, M. Y. 2008, Comment on "Interplanetary Origin of Intense Geomagnetic Storms (Dst < -100 nT) during Solar Cycle 23" by W. D. Gonzalez et al., GRL, 35, L01101
28 Yurchyshyn, V., Wang, H., & Abramenko, V. 2004, Correlation between Speeds of Coronal Mass Ejections and the Intensity of Geomagnetic Storms, Space Weather, 2, S02001
29 Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., & Gopalswamy, N. 2005, Statistical Distributions of Speeds of Coronal Mass Ejections, ApJ, 619, 599   DOI
30 Zhang, J., Hess, P., & Poomvises, W. 2013, A Comparative Study of Coronal Mass Ejections with and Without Magnetic Cloud Structure near the Earth: Are All Interplanetary CMEs Flux Ropes?, Sol. Phys., 284, 89   DOI
31 Zurbuchen, T. H., & Richardson, I. G. 2006, In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 123, 31   DOI
32 Cid, C., Saiz, E., & Cerrato, Y. 2008, Comment on "Interplanetary Conditions Leading to Superintense Geomagnetic Storms (Dst ${\leq}$ -250 nT) during Solar Cycle 23" by E. Echer et al., GRL, 35, L21107.   DOI
33 Berger, M. A. 1984, Rigorous New Limits onMagnetic Helicity Dissipation in the Solar Corona, Geophys. Astrophys. Fluid Dyn., 30, 79   DOI
34 Chae, J. 2007, Measurements of Magnetic Helicity Injected through the Solar Photosphere, Adv. Space Res., 39, 1700   DOI
35 Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., et al. 2013, Comparison of Helicity Signs in Interplanetary CMEs and Their Solar Source Regions, Sol. Phys., 284, 105   DOI
36 Fairfield, D. H., & Cahill, L. J. 1966, Transition Region Magnetic Field and Polar Magnetic Disturbances, JGR, 71, 155   DOI
37 Dessler, A. J., & Parker, E. N. 1959, Hydromagnetic Theory of Geomagnetic Storms, JGR, 64, 2239   DOI
38 Echer, E., Gonzalez, W. D., & Tsurutani, B. T. 2008, Interplanetary Conditions Leading to Superintense Geomagnetic Storms (Dst ${\leq}$ -250 nT) during Solar Cycle 23, GRL, 35, L06S03.
39 Echer, E., Gonzalez, W. D., Tsurutani, B. T., & Gonzalez, A. L. C. 2008, Interplanetary Conditions Causing Intense Geomagnetic Storms (Dst ${\leq}$ -100 nT) during Solar Cycle 23 (1996-2006), JGR, 113, A05221.
40 Fisher, R. R., & Poland, A. I. 1981, Coronal Activity below 2 Solar Radii - 1980 February 15-17, ApJ, 246, 1004   DOI
41 Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. 1994, What is a Geomagnetic Storm?, JGR, 99, 5771   DOI
42 Gonzalez, W. D., Echer, E., Clua-Gonzalez, A. L., & Tsurutani, B. T. 2007, Interplanetary Origin of Intense Geomagnetic Storms (Dst < -100 nT) during Solar Cycle 23, GRL, 34, L06101.
43 Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., & Howard, R. A. 2001, Predicting the 1-AU Arrival Times of Coronal Mass Ejections, JGR, 106, 29207   DOI
44 Gopalswamy, N., Yashiro, S., & Akiyama, S. 2007, Geoeffectiveness of Halo Coronal Mass Ejections, JGR, 112, A06112.
45 Gopalswamy, N., Xie, H., Makela, P., Akiyama, S., Yashiro, S., Kauser, M. L., et al. 2010, Interplanetary Shocks Lacking Type II Radio Bursts, ApJ, 710, 1111.   DOI