• Title/Summary/Keyword: CMAC memory

Search Result 15, Processing Time 0.022 seconds

An Effective Memory Mapping Function for CMAC Controller (CMAC 제어기를 위한 효과적인 메모리 매핑 함수)

  • Kwon, H.Y.;Bien, Z.;Suh, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.488-493
    • /
    • 1989
  • In this paper, the structure of CMAC address mapping is first revisited, and the address hashing function and the random mapping is discussed in the conventional CMAC implementation. Then the effective size of CMAC memory is derived from the modulus property of the CMAC address vector, and a new hashing function for the effective memory mapping is proposed for a CMAC implementation with feasible memory size and no troublesome random mapping. Finally, the performance of the conventional CMAC learning algorithm and that of the proposed new CMAC scheme arc compared via simulations.

  • PDF

Reducing Memory Requirements of Multidimensional CMAC Problems (고차원 CMAC 문제의 소요 기억량 감축)

  • 권성규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.3-13
    • /
    • 1996
  • In orde to reduce huge memory requirements of multidimensional CMAC problems, building a CMAC system by problem decomposition is investigated. Decomposition is based on resolving a displacement vector in cartesian coordinates into unit vectors that define a few lower-dimensional CMACs in the CMAC system. A CMAC system for an an in verse kinematics problem for a planar manipulator was simulated and the performance of the system was evaluated in terms of training and output quality.

  • PDF

CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example (다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

Optimal Design of CMAC network Using Evolution Strategies (진화 스트레티지를 이용한 CMAC 망 최적 설계)

  • 이선우;김상권;김종환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents the optimization technique for design of a CMAC network by using an evolution strategies(ES). The proposed technique is designed to find the optimal parameters of a CMAC network, which can minimize the learning error between the desired output and the CMAC network's as well as the number of memory used in the CMAC network. Computer simulations demonstrate the effectiveness of the proposed design method.

  • PDF

The Improvement of Pattern Recognition using CMAC Neural Networks (CMAC 신경회로망을 이용한 패턴인식 학습의 개선)

  • Kim, Jong-Man;Kim, Sung-Joong;Kwon, Oh-Sin;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.492-494
    • /
    • 1993
  • CMAC (Cerebeller Model Articulation Controller) is kind of Neural Networks that imitate the human cerebellum. For storage and retrieval of learned data, the input of CMAC is used as a key to determine the memory location. he learned information is distributively stored in physical memory. The learning of CMAC is very fast and converged well, therefore, it effects the application of Pattern Recognition. Through the our experiment of Pattern Recognition, we will prove that CMAC is very suitable for On-line real time processing and incremental learning of Neural Networks.

  • PDF

Automization of grinding process by CMAC (CMAC 메모리에 의한 연마공정자동화)

  • 정재문;김기엽;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.186-189
    • /
    • 1990
  • The automization of manufacturing lines may be accomplished by replacing the human operator with computer system. This paper describes an idea to fully automize the razor qrinding process. Now, in this system, to control the process, human operator must estimate the qrinded states and control the grinding machine continuously. We propose two methods to automize this process by using CMAC memory. One is about learning expert-rules without direct communication with operator. And the other is complete self-learning method based on CMAC's learning algorithm. These ideas may be applied for another manufacturing processes.

  • PDF

ON LEARNING OF CMAC FOR MANIPULATOR CONTROL

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.93-115
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller(CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d. o. f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process; A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network (자율조직 CMAC 신경망에 의한 비선형 시계열 예측)

  • 이태호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.62-66
    • /
    • 2002
  • An attempt of using SOCMAC neural network for the prediction of a nonlinear sequence, which is generated by Mackey-Glass equation, is reported. The ,report shows the SOCMAC can handle a system with multi-dimensional continuous inputs, which has been considered very difficult, if not impossible, task to be implemented by a CMAC neural network because of a huge amount of memory required. Also, an improved training method based on the variable receptive fields is proposed. The Performance ranged somewhere around those of TDNN and BP neural networks.

  • PDF

CMAC (Cerebellar Model Arithmetic Controller)

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.675-681
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, It is necessary to analyze the effects of the CMAC control parameters an the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with prespecified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

LEARNING PERFORMANCE AND DESIGN OF AN ADAPTIVE CONTROL FUCTION GENERATOR: CMAC(Cerebellar Model Arithmetic Controller)

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.125-139
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, it is necessary to analyze the effects of the CMAC control parameters on the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with pre specified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF