CMAC A7l & $13 4.3

A ql vl el o] g

CMAC #0718 213 A3l ojre o]y 34

‘A Ed, w3,

}‘] oé%"

¥Ry Wi AR RS, TeFn AP

An Effective Memory Mapping Function for CMAC Controller

H. Y. Kwon’, Z. Bien’, 1. H. Suh™
*KAIST, *" Hanyang Univ.

Abstracts

In this paper, the structure of CMAC address mapping
is first revisited, and the address hashing function and the
random mapping is discussed in the conventional CMAC
implementation. Then the effective size of CMAC memory
is derived from the modulus property of the CMAC address
vector, and a new hashing function for the effective
memory mapping is proposed for a CMAC implementation
with feasiblc memory size and no troublesome random map-
ping. Finally, the performance of the conventional CMAC
learning algorithm and that of the proposed new CMAC
scheme arc compared via simulations.

1. Introduction

As a means of controlling complex systems such as
articulated robot manipulators, Albus{1-3] proposed the
Cercbellar Model Articulation Controller(CMAC) based on
the principle of cerebellar mechanism so that the overall
control system behaves as desired though no a priori
knowledge for the system dynamics is utilized. The CMAC
is designed to accept system variables in the form of an
input vector and give a response such that two similar input
vectors give similar response, and through this generaliza-
tion process it is capable of learning even for nonrepetitive
tasks as tested in some experimental results[1-7]. Albus
applied thc CMAC to control a seven degree of freedom
master-slave arm{1], and to learn simple test func-
tions[2][3]. And the CMAC based control has been studied
for a two degree of freedom biped walking device by
Camanal4], for a position and velocity servoing of the
manipulator with visual feedback(5], for a two degree of
freedom articulated robot arm([6], and for five-axis indus-
trial robot[7] by Miller and his group. Also, the CMAC
was used to learn some two dimensional pattern groups for
shape recognition by Miller{8].

Although the CMAC was applied to various applica-
tions as a learning control scheme, the detail analysis of the
CMAC mapping and its learning capability were partially
performed yet. For CMAC learning rule, the algebraic and
the sequential learining rules were proposed by Shamma[9]
and Hwang[10][11], respectively. Miller{6] presented some
simulation results to aid the design of the CMAC parame-
ters such as the size of CMAC associative memory A
(|A]), the number of CMAC memory locations(C)
addressed by each input state, and learning gain B. Among
the CMAC parameters, particularly |A| has set a diffi-
culty in the CMAC implementation since it seems to be
required for |A | an impractical huge memory space in the
order of the total number of discrete input sensor vectors.

And, therc has mot been any guidelines for selccting the
physical size of the CMAC memory in. conventional
CMAC.

In this paper, the structure of CMAC address mapping
is first revisited, and the address hashing function and the
effect of rundom mupping is discussed in the conventional

- CMAC implementation. Then the effective size of CMAC

memory is derived using the modulus property of the
CMAC address vector, and a new hashing function for the
effective memory mapping is proposed for a CMAC imple-
mentation with feasible memory size and no troublesome
random mapping. Finally, the performance of the conven-
tional CMAC learning algorithm and that of the proposed
new CMAC scheme are compared via simulations.

2. The CMAC revisited

In terms of modified notations the basic CMAC algo-
rithm of Albus{2][3] will be revisited and some of difficul-
ties of the theory will be discussed. To describe the struc-
ture of CMAC mapping, let f be the complex, multi-
dimensional nonlinear function of the form :

p = f(s) m

where s = (54, 55, ..., sN)T is the sensor input vector, and
p = (p;, Py, ..., p.)" is the response vector. Here super-
script T denotes the transpose. The CMAC computational
scheme for converting the input vector s into the response
vector p shown in Fig. 1, where M and A denote the inter-
mediate mapping matrix and the CMAC memory, respec-
tively.

Fig. 1 The basic CMAC mapping scheme.

—488

89 o &

Z 7188 FA SESE s =13

A 1989.11.25

Let’s define some notations. Given two positive
integers n and C, let Mod(n, C) denote the remainder of
n when divided by C. Also, given a row vector

= (g4, 82; ~ 8¢c)» let Rot_R(g, n} be the vector
obtained by rotating » times the clements of the vector g
by right-shifting, c.g., RotR(g,2) = (sc.1 8¢, 81»
vy 8o —g)y ELC

Suppose that cach component 5, 1 S <N, of the
input vector s takes a quantized discrete value among R,
levels. Then, without loss of generality, it can be assumed
that s, takes an integer, ie, 0 < 5; < R;—1. Also, sup-
pose that a given positive integer C means the number of
memory ccll being associated with an input vector. Then
the basic CMAC computational schemef[2] for converting
the input vector s into the response vector p can be inter-
preted as follows :

Step 1. (s ~ M) For an input vector s, each R;-ary vari-
able s is first mapped into a row vector m;, whose
elements m{, j =1,2,..,C, have the value of C
contiguous mtegus fmm v, to 5,+C -1, and which is
rearranged in such a way that

Mod(m‘,C)—’-j—l, l1<j=C 2)
Thus
m = (m,l, miz, vy mic) 3)
= RotR({{s;, 5;+1, 5,+C~1), Mod(s;, C)).
Thus, for cach N dimensional input vector
£ = (54, 8y, v,,) , there corresponds the N XC
matrix M as
m, ml1 m12 mlc
o2 c
m my m m
M= 2. = M2 M 2 “)
my m‘,,} '”N2 mg
Step 2. (M ~ A) For each j = 1,2, ..., C, define the j-
th address vector w; for the input s take
By = (mll mé m,‘s)r 1 <j=<C.(5
Then we may write the intermediate matrix M for
input 5 as
M = (“17 “‘2: i ‘Lc)~ (6)
Let A* denote the vector of physxcal addresses called
by the input vector s, and A is a subset of the
CMAC memory, A. And Iet h(n,) be a hashing
functxon{l2] using the key record of the address vector
‘. to gwe a physical address for the j-th element in
”Ihcn A" can be derived as :
= (i) h(ny) h(pc)- ™
Step 3. (A - p) Finally, the CMAC response p for the

input vector s can be formulated as sum of weights in
C locations of A as follows.
c

S wh(e)),

i=1

where w{h(p;)) is the L -dimensional vectored data at
address of h(p ;) in the memory A.

p= ()

Consider two ncighboring input vectors which have
some common addross vectors g,’s in Eq. (5). In the
CMAC mapping scheme, these ovérlapping of the vector of
addresses in A~ leads to so called generalization as a kind
of learning[2], and the number of the overlapping elements
varies according to the distance between the two inputs in a
norm sense,

3. Apparent Size of CMAC Memory A

Recall that |A | means the number of locations in the
CMAC mcmory A or simply the size of memory A that is
required when the CMAC is implemented. .From Eq. (3)
it can be observed that-a component s5; of the vector s is
an R;-ary variable while each component m’ of the vector
m, for s; is an (R;+C —1)-ary variable. Then JA| may

be determined dlrcct) from the range of w; in Eq. (5).
and in this case we shall denote the size |A [a ,
N
[Al, =TI, +C -1, ®

i=1

the subscript ¢ means the apparent size. Note also that a
hashing-function / (;Lj) which gives the physwal address in
A, locations usm;_. an address vector w; in Eq. (5) as
follows :

ha("‘j) = m{ + méﬁr +
+ 111,{,'(151}52 <
where R, = R, +C 1.

It is remarked that |A [, is in the order of RY, and
this is an impractically huge size in many real sxtuatxons
To solve this difficulty of |A], in the conventional
CMAC[1-8], such a memory A is taken to be a hypotheti-
cal memory, and another random hash method is addition-
ally used to map from the large memory A into a small
memory A, with practical size assummg that all possible
states of s will not be encountered in solving a particular
control problem.

However, this sccondary random mapping has been
introduced to avoid the curse of dimensionality of [A|,
without consideration of its effects on inherent learning
capability of CMAC, i.e., generalization. In fact, there are
finite probability of mapping collisions which not only
create undesirable interferences between distant input vec-
tors, but also may deteriorate the learning speed to
compensate the random mapping-interferences in data
storage in the CMAC memory A,[2]. Furthermore, the
assumption of special task can be no longer valid when the
task of the manipulator is frequently altered, and it sets a
severe restiction on general of CMAC applications.

“Ry_y) (10)

On the other hand, Albus[2] thought that the CMAC
has an storage reduction by distributed memory look-up
technique. He thought about the minimal [A,| which
makes s -~ A mapping be unique for each input vector.
Then it should be satisfied that the number of ways to take
C locations from a total of]Ap} is greater than R" , i

A 14, (!
NN I L =R". an
c ci(la,l - oy
Normalizing |A, | by R after some algebraic manipulations
with Eq. (11), ¢ the minimum requirement of |A, |/R can be
obtained as
4,1 ¢
Lo Z[ave 1) a2
R R

— 489~

CMAC A8371E 918t Esbaal wlRe] oy &4

R = 100

TP T

T

1411 prerperon
§1«>ID y i
1

Sob bl
0.0t 0.1 1 10 100
c/®

A b b AR o B A SAARRE,

o0 Sl b LA,

Fig. 2 Retation of the C and |4, | by Albus[2].

Fig. 2 shows that |A | can be reduced as C increases to
the value of R when R = 100.

Howcver, this memory reduction model makes an
under-estimation of |A,| because C locations for an input
vector s can not hc arbitrary chosen in total {A| but
rather through the highly structured s - A mapping. In the
next section, the sizc of effective CMAC memory will be
derived using the structured CMAC mapping.

4. Modulus Property of the CMAC Address Vector
and Association Block

Let us consider the case when the input is two dimen-
sional vector s = (s, sz)T. Let {m}, 1 i <2 denote
a set of elements of m;, 1 =i x 2, in Eq. (3). Then the
CMAC address space for n; in Eq. (5) can be represented
by {m}x{m,}. Then, the range of the elements of the
address vector p, called by an input s constructs an associ-
ation block B{s) which defined by a two dimensional
CXC region of (my, m{, ..., mf) X (mz', my, .., mg)
which is equivalent with (sq, 5,41, .., 5;+C~1) X
(53, s3+1, ..., 5,+C~1) in CMAC address space from Eq.
(3%. or example, when N = 2, R; = 11, R, = 10, and
C =4, Fi%. 32 shows the association blocks for inputs

It is remarked that the association block B, (s) con-
tains only C effective address vectors among the C XC pos-
sible address vectors because of the constraints of the same
modulus for each component of the CMAC address vector
in Eq. (2). Fig. 3 shows the map of effective address vec-
tors wherc the effective address denotes as “1" and non-
effective address denotes as "0". Hemce, the two dimen-
sional association block B.(s) for an input s can be
derived as a CXC matrix and its k Xk submatrix I,:(‘),
0 < k(s) < C, as follows :)

ik(:) 0

B.(s) = s (13.1)
0 iC—l:("')

where

0 001
0 010

fk(,)-—- 0 - 10 0], (13.2)
1 - 000

and k(s) denotes Mod (s5-s4, C).

For more than two dimensional input vector s,
although the map of the effective address vector is more
complex, the association block B (s) for an N-dimensiona}
input vector s is extended to N-dimensional volme of C
elements in the CMAC address space {m}x{m,}x

- X{my} while thc number of effective locations is only
C in it under the modulus constraints in Eq. (2), similarly.
Consequently, it can be observed that the effective number
of the CMAC addresses in associaton memory A decreases
as the dimensionality N of s increases or C increases.

5. Effective Size of CMAC Memory A

How much reduced the CMAC address space through
the consideration of cffective addresses ? Let [A |, denote
the effective size of locations in associative memory A con-
sidering the modulus constraint in Eq. (2). Herc subscript
e denotes the effective memory size. Recall that m{ is an

T, _ - T 3 7
i (.57, % = (6,4, and ’s = (3,6)", respec- E,-ary variable in Eq. (3). Also, let @, and Z, denote the
tively. quotient and remaindcr, respectively, of R, by division of
my C. Suppose a sub-block of an N dimensional association
X block can be characterized with N lengths of
Zz_/ ,_1_9_2_05_1_2_9_01'1_3_0_0_,1 0_] Z,,1<i=sN,and0=<Z, <C. And define a function
(Ry«c2) 411070 0 1760 0 6 110 9 0 110 0 MZy, Z,, ..y Zy) be the minimum value of its elements
tot'0o 0 1 06 01 0061 00 o Z,,1 <'i <N, corrcsponding to the number of effective
" .nc/io T oforo 1 o150 T 0 o:o 7 B lements in the block under the constraint of same modulus
2 1t o oloi e oloi S0l o B for each Z,, 1 si < N, from Eq. (2) as follows :
[0 o 170]ofe L M &%) MZ(, 2y, oy Zy) = Min (24, Z,, ..., Zy),
L H
of 700 ¢ t1eiofolifo,0fol1]o,0 0 0<Z <C,1=<i=<N. 14)
5310 1 0 oiof1]o o10f1]oforo 1
11 00 0'1 0Jo 017 efo'ot1 o ,
Y - CRAPE,
:—0001.0001;00():—:00 Then |4], can be obtained by
of Tro 01 01001 000 10400 (Al pe1 = QMC) + MZy)
‘ot 0 0lo1 0 0lo 1 =
Jo-'1ooo:1ooo'1;gg'$; i€+ 2, s
il Rl el -4 [Alnez = G122MC, C) + Q1MC, Z3)
0 5 v m
SR cm\| : Z“?‘ 1 + QMZ4, C) + MZ4, Zy)
{Rr.1) IRy = 00,0 + Q1 Z; + 0,2,
Fig. 3 CMAC address space and the association blocks. + Min (24, Z,), (15.2)

- 490 ~

s3] =33

1989. 11. 25

and 5o on.

Since the expansions of the combination such as in
Eq. (15.1)-(15.2) are very complex process, it is hard to
analysis the properties of them from their parameters N and
C as well as each Q; and Z; for 1 <i < N. Hence to
simplify our argument, suppose that all elements s,
1 =i <N, of the input vector s has the same resolution
R so thatR = R, +C~1 and R *QC + Z. Then the
total number of effective locations in memory A can be
derived from Eq. (15.1)-(15.2) as

=QC +2Z,
= Q¥ + 202 + 2,

(16.1)
(16.2)

Al n=1
Al =2

and so on. Hence, ths effective size of associative memory
IA [, can be obtained by mathematical induction as follows

N1
[al, =0 + 3 [7) o'z

=% + 1(Q+1)N - "’] z. an
By normalizing |A{, and C with respect to R,
(4] wZ o w.ozZ)c
— = e+ =+ Q”(l——-)) =
C C R
z
foerl,OsE<1. (18)

Consider a numerical example the CMAC memory
reduction when N = 10, R = 100, and C = 80. Then the
apparent size of thu CMAC memory is calculated as
A, = 338x1022 from Eq. (9) while the effective
CMAC memory requires only |A], = L. 18x10° by Eq.
(18). Comparing our effective memory size with the
Albus’s |A|, = 222 by Eq. (12) which is insufficient for
unique s ~ A mapping.

Assuming that & >> 1 and € >> 1 and after some
algebraic manipulatioss, it can be obtained a more uscful

approximation [A | for {A|, using R and C instead of
the 0, Z, and C.
1+CR, C c
A1 Yy — f—=1
£ C/R R R
—— c c (19)
K A | f=-z1
R R

Then the crror between the exact and the approximation of
{A|,/R can be derived from Eq. (18) and Eq. (19)

ERR 4 m = |A| R — |A| R

@+ - o¥] £ (20)
C

Fig. 4 shows the size reduction of effective CMAC mamory
according to the change of C when N and R are given.
Comparing with Fig. 2, note that the approximation of
|A|, by Albus[2] is an under-estimated. Also, for
N2 2, the minimum memory realization of CMAC is
occured at C/R = 1, Also, the CMAC with C/R > 1 can
be thought as a kind of Perceptron[2] because of the gen-
eralization for an input vector influences almost of all
memory cells, and where memory reduction is no longer
valid.

OB R e e AL e A il e a1 e A

o N
1e+09 A \ o N=4
Te+08 \\ . \\ -=N=3
10407 3 —Nes
10406
1ed(d
Tes04
10403
100
10
1
0‘ JUATIT ek
b b A A LEREE, SoddeddAdiL, dndiod.
00‘00‘ 0.1 1 100
(743
Fig. 4 Relation of thc C and the |A [e-

Also the ratio of the number of addresses called by an
input s over total cffective address space can be obtained
by

C _ C/R @
lA {e’-m 1+ CIR
for one-dimensional case, and
[
¢ = = l C/R (22)
[Alowp 141, jal. R

for N dimensional case. Fig. § shows C/|A|,,p and
CI{A],yp Vvs. CIR characteristics. These two variables
mversely represent the number of mdependent input vectors
required in complete learning for given CMAC memory.

1

0.
08
0.7
- 06
05
04
03

02
[A) vd

C/(R4Cm1)

%.O'T" ot 1 1

(@)

T T T T TTITI

YT T YT

100
S
A

01

[X4]
0.001
00001
Te—05
te~06
te-07
1008
1o-09
te-10
to~11

’ / ——K=15
I BRI

0.01 a1 1 10 100

PRy 1 FEESTI TS MYV

() C/R

Fig. 5 CMAC memory occupation by an input s (a) 1-
Dim. case (b} N-Dim. case.

- 491 -

CMAC Ao}zl & $13 astAql v 2e ofg g

Finally, consider a cost function for the CMAC imple-
mentation as
A

I c
J =k YN+ ok,

(23)

where the first term represents a CMAC memory require-
ment while the second represents for CMAC caculation
time, and’k, and k, are appropriate weighting factors. Fig.
6 shows thc cost function when both ky, k, are unity.

13
i

- YT
[3
S
e
-
3
i 100
L4 3
N
N
AN
P X
\-
10 y\;
' 2 Lol Allii L L LAl A1 Ll
0.01 0.1 [10 100
o/

Fig. 6 A CMAC cost function for the [A |, and the C.

6. Dsfgn of Effcctive Memory Mapping Function

For- many real cnvironment, the CMAC parameters of
N and R are often inherently fixed according to its tasks.
Selecting the value of C, |A|, is simply determined in
Eq. (18), but generally the The address mapping from the
effective adress vector to one dimensional associative
memory A requires very complex hashing function sincc the
CMAC address spacc, as in Fig. 3, consists of not only
regular C¥ volume but also irregular volumes from various
nonzero Z;’s in Eq. (18). Hence practical realization of
CMAC with simple hashing function, we proposed an aug-
mented effective associative memory |A |‘* defined as

N
Al =c Il + 1= |al,

i=1

(24)

Then the new hashing function he‘('ll) for the
CMAC address vector g, into IAIZ‘ locations can be
given by

h) = (@) + 0,0, +
tayQ1Qy - - Oy-)C t 2y (29)

where g; and z; arc the quotient and the remainder of
m{IC, 1 <i <N, respectively. It is also noted that all
z;’s, 1 <i <N, arc the same since m/, 1 <i < C, has
the same modulus from Eq. (2).

The crror between (A, and |A |‘ , are obtained as
ERRea- = IA !¢+ - |A|¢
= le+1'c - o")(c - 2)

From above, thc wasted memory space ERR , in
e
|A |¢ . can be reduccd by setting parameter C such that Q

(26)

increases or Z approach to C. Also, note that |A| _ is
consistent with exact value of |A|, when Z = C in Eq.
(26).

7. Numerical Examples

For a simulation study, two dimensional sinusoidal test
functions[3] are choscn as p ‘is chosen as
2ms 275,
) sin (—=),
0 360
1=<s5;, <360, 1 <5, <180,

and it is shown in Fig. 7.

a

P =

sin (

@n

Fig. 7 2-Dim. test function.’

The physical memory space is 2910 locations; the size
of association block is C = 32, learning gain B is. chosen
as unity for one shot learning, and the learning strategy of
maximum error correction is used. s

Fig. 8 presented the CMAC learning with conventional
CMAC memory mapping where |A], is calculated as
82501 locations from Eq. (9), but physical memory space is
used only 3.53 % of |A|,. In this case, the hashing-
function h, (p.]) of Eq. (10), and additional random map-
ping are used for the CMAC address gencration. The
reconstruction of the desired response function are shown in
Fig. 8a-8d as the number of stored data increases with 1, 2,
16, and 50, respectively.

Fig. 9 presented the CMAC learning with proposed
effective memory mapping scheme where |A I“ is used as
2910 locations from Eq. (24) and the hashing-function
hp(p.j) of Eq. (25). The reconstruction of the desired
response function are shown in Fig. 9a-9d as the number of
stored data increases with 1, 2, 16, and 50, respectively.

8. Conclusion

In this paper, the memory mapping function of the
conventional CMAC is analyzed. Then the cffective size of
CMAC memory is derived from the modulus property of
the CMAC address vector, and a new hashing function for
the effective CMAC memory mapping is proposed with
feasible memory size and no troublesome random mapping.
Finally, the performance of the conventional memory map-
ping scheme and that of the proposed new memory mapping
scheme are compared via simulations of CMAC learning
for a two dimensional test function. It is remarked that our

proposed scheme is stable and fast convergent without prob-
lem of random mapping collisions, and where a feasible
small memory space is required.

—492 -

)

) /\\,i“.l)
Akl il

4
N
AR WEapy sl it |
e
I b R et
o NG
b‘i“‘ll"w o
axyil

P
/l(!'.
l)" "

@ (d)

N
iy
o

;) dlll'": ',\t ;

o)

(v

Fig. 9 CMAC learning with the effective memory mapping scheme.

[71 R. P. Hewes and W. T. Miller HI, "Practical
Demonstration of a Learning Control System for a

. . . Five-axis Industrial Robot," [Inrelligent Robor and
{1} J. S. Albus, "Theoretical and experimental aspects of a Computer Vision : Seventh in a Series, Editor : D. P.
cerebellar model”, Ph. D. Dissertation, Univ. of Mary- Casasent, Proc. SPIE 1002, pp. 679 - 685, 1988.

land, 1972. .) [8] F. H. Glanz, and W. T. Miller HI, "Shape recognition

[2] J. 5. Albus, "A new approach to manipulator controf : using a CMAC based learning system,” lmelligent
the cerebellar model articulation controller(CMAC)," Robots and Computer Vision: Sixth in a Series, Proc.
Trans, ASME J. Dynamic Syst., Meas., Contr., vol. 97, SPIE Vol.848, pp. 294 - 298, 1987.

.3 . - .
no. 3, pp 22'0 221, 1975‘ [9] 1. S. Shamma, "A Method for Inverse Robot Calibra-
[3]1 J. S. Albus, "Duta storage in the cercbeliar model arti- tion,” Appendix B., Evaluation of CMAC, MS.

References

culation controllet(CMAC)," Trans. ASME J. Dynamic Thesis, Dept. of Mechanical Enginecring, M.IT..
Syst., Meas., Conir., vol. 97, no. 3, pp. 228 - 233, 1985.
1975,

[106] H. Hwang and D. Y. Choi, "On lcarning of CMAC

. ¢ for Manipulator Control," Proc. of '89 Korea Auiom.
Mathcmancz}l Models for Hu‘man Posfura Control, Contr. Conf., pp. 653-662, Seoul, Korea, 1989.
Ph.D. Thesis, Dep. of Eleetrical Engincering, Obhio . . :
State Univ., 1977. [11] H. Hwang and D. Y. Choi, "Learning Performance
[S] W. T. Miller T, "Sensor-based control of robotic and (l?hczmg ?fpzm Ada?(;gleKComrzl Functéon Gi{rcra-
manipulators using general learning algorithm,” IEEE tor: AC," Proc. of orea Autom. Contr. Conf-.

f4] P. C. Camana, "A Study of Physiologically Motivated

J. Robotics & Awtom., vol. RA-3, no. 2, pp. 157 - pp. 675-681, Scoul, Korea, 1989.
165, 1987, [12] W. D. Maurer and T. G. Lewis, "Hash Tablc
[6] W. T. Miller 1II, F. H. Glanz, and L. G. Kraft, 11\30*’1“9";‘5 Compusing Surveys, Vol. 7, No. 1, pp. § -

"Application of a general algorithm to the control of
robotic manipulators,” Int. J. Robot. Res., vol. 2, pp.
84 - 98, 1987.

~493 -

