• Title/Summary/Keyword: CMAC Neural Network

Search Result 12, Processing Time 0.023 seconds

Design for CMAC Neural Network Speed Controller of DC Motor by Digital Simulations (디지털 시뮬레이션에 의한 CMAC 신경망 직류전동기 속도 제어기 설계)

  • 최광호;조용범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • In this paper, we propose a CMAC(Cerebellar Model Articulation Controller) neural network for controlling a non-linear system. CMAC is a neural network that models the human cerebellum. CMAC uses a table look-up method to resolve the complex non-linear system instead of numerical calculation method. It is very fast learn compared with other neural networks. It does not need a calculation time to generate control signals. The simulation results show that the proposed CMAC controllers for a simple non-linear function and a DC Motor speed control reduce tracking errors and improve the stability of its learning controllers. The validity of the proposed CMAC controller is also proved by the real-time tension control.

  • PDF

Active Vibration Control of Structure using CMAC Neural Network under Earthquake (CMAC 신경망을 이용한 지진시 구조물의 진동제어)

  • 김동현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.509-514
    • /
    • 2000
  • A structural control algorithm using CMAC(Cerebellar Model Articulation Controller) neural network is proposed Learning rule for CMAC is derived based on cost function. Learning convergence of CMAC is compared with MLNN(Multilayer Neural Network). Numerical examples are shown to verify the proposed control algorithm. Examples show that CMAC can be applicable to structural control with fast learning speed.

  • PDF

Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network (자율조직 CMAC 신경망에 의한 비선형 시계열 예측)

  • 이태호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.62-66
    • /
    • 2002
  • An attempt of using SOCMAC neural network for the prediction of a nonlinear sequence, which is generated by Mackey-Glass equation, is reported. The ,report shows the SOCMAC can handle a system with multi-dimensional continuous inputs, which has been considered very difficult, if not impossible, task to be implemented by a CMAC neural network because of a huge amount of memory required. Also, an improved training method based on the variable receptive fields is proposed. The Performance ranged somewhere around those of TDNN and BP neural networks.

  • PDF

The injection petrol control system about CMAC neural networks (CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.395-400
    • /
    • 2017
  • The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

Robust Tracking Control of a Flexible Joint Robot System using a CMAC Neural Network Disturbance Observer (CMAC 신경망 외란관측기를 이용한 유연관절 로봇의 강인 추적제어)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.299-307
    • /
    • 2003
  • The local structure of CMAC neural networks (NN) results in better and faster controllers for nonlinear dynamical systems. In this paper, we propose a CMAC NN-based disturbance observer and its corresponding controller for a flexible joint robot. The CMAC NN-based disturbance observer compensates for the parametric uncertainties and the external disturbances throughout the entire mechanical system. Finally, a simulation result is given to demonstrate the effectiveness of proposed design method's robust tracking performance.

Variable structure control of robot manipulator using neural network (신경 회로망을 이용한 가변 구조 로보트 제어)

  • 이종수;최경삼;김성민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • In this paper, we propose a new manipulator control scheme based on the CMAG neural network. The proposed control consists of two components. The feedforward component is an output of trained CMAC neural network and the feedback component is a modified sliding mode control. The CMAC accepts the position, velocity and acceleration of manipulator as input and outputs two values for the controller : One is the nominal torque used for feedforward compensation(M1 network) and the other is the inertia matrix related information used for the feedback component(M2 network). Since the used control algorithm guarantees the robust trajectory tracking in spite of modeling errors, the CMAC mapping errors due to the memory limitation are little worth consideration.

  • PDF

Sensitivity Property of Generalized CMAC Neural Network

  • Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • Generalized CMAC (GCMAC) is a type of neural network known to be fast in learning. The network may be useful in structural engineering applications such as the identification and the control of structures. The derivatives of a trained GCMAC is relatively poor in accuracy. Therefore to improve the accuracy, a new algorithm is proposed. If GCMAC is directly differentiated, the accuracy of the derivative is not satisfactory. This is due to the quantization of input space and the shape of basis function used. Using the periodicity of the predicted output by GCMAC, the derivative can be improved to the extent of having almost no error. Numerical examples are considered to show the accuracy of the proposed algorithm.

  • PDF

CMAC Controller with Adaptive Critic Learning for Cart-Pole System (운반차-막대 시스템을 위한 적응비평학습에 의한 CMAC 제어계)

  • 권성규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.466-477
    • /
    • 2000
  • For developing a CMAC-based adaptive critic learning system to control the cart-pole system, various papers including neural network based learning control schemes as well as an adaptive critic learning algorithm with Adaptive Search Element are reviewed and the adaptive critic learning algorithm for the ASE is integrated into a CMAC controller. Also, quantization problems involved in integrating CMAC into ASE system are studied. By comparing the learning speed of the CMAC system with that of the ASE system and by considering the learning genemlization of the CMAC system with the adaptive critic learning, the applicability of the adaptive critic learning algorithm to CMAC is discussed.

  • PDF

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

A study on the stabilization control of an inverted pendulum system using CMAC-based decoder (CMAC 디코더를 이용한 도립 진자 시스템의 안정화 제어에 관한 연구)

  • 박현규;이현도;한창훈;안기형;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2211-2220
    • /
    • 1998
  • This paper presetns an adaptive critic self-learning control system with cerebellar model articulation controller (CMAC)-based decoder integrated with the associative search element (ASE) and adatpive critic element(ACE)- based scheme. The tast of the system is to balance a pole that is hinged to a movable cart by applying forces to the cart's base. The problem is that error feedback information is limited. This problem can be sloved when some adaptive control devices are involved. The ASE incorporates prediction information for reinforrcement from a critic to produce evaluative information for the plant. The CMAC-based decoder interprets one state to a set of patways into the ASE/ACE. These signals correspond to te current state and its possible preceding action states. The CMAC's information interpolation improves the learning speed. And design inverted pendulum hardware system to show control capability with neural network.

  • PDF