Robust Tracking Control of a Flexible Joint Robot System using a CMAC Neural Network Disturbance Observer

CMAC 신경망 외란관측기를 이용한 유연관절 로봇의 강인 추적제어

  • 김은태 (연세대학교 전기전자공학부)
  • Published : 2003.09.01

Abstract

The local structure of CMAC neural networks (NN) results in better and faster controllers for nonlinear dynamical systems. In this paper, we propose a CMAC NN-based disturbance observer and its corresponding controller for a flexible joint robot. The CMAC NN-based disturbance observer compensates for the parametric uncertainties and the external disturbances throughout the entire mechanical system. Finally, a simulation result is given to demonstrate the effectiveness of proposed design method's robust tracking performance.

CMAC 신경망은 지역적 구조로 비선형제어에 적용 시 좋은 성능을 보이는 것이 잘 알려져 있다. 본 논문에서는 CMAC 신경망 외란관측기와 제어기를 제안하고 이를 유연관절 로봇의 강인 추적제어에 적용하도록 한다. 이때 CMAC 신경망 외란관측기는 기계시스템에서 발생하는 파라미터의 불확실성과 외부 외란을 상쇄하는 역할을 한다. 컴퓨터 모의 실험을 통하여 본 논문에서 제안한 CMAC 외란관측기를 유연관절 로봇의 제어에 적용하고 그 성능을 확인하도록 한다.

Keywords

References

  1. M. Spong, 'Modeling and control of elastic joint robots,' J. Dynamic Syst., Meas., Contr., vol. 109, pp. 310-319, Dec. 1987 https://doi.org/10.1115/1.3143860
  2. J. J. E. Slotine and S. S. Sastry, 'Tracking control of nonlinear systems using sliding surface with application to robot manipulator,' Int. J. Control, vol. 38, pp. 465-492, 1983 https://doi.org/10.1080/00207178308933088
  3. S. Lim, D. Dawson and K. Anderson, 'Reexamining the Nicosia-Tomei robot observer-controller from a backstepping perspective,' IEEE Trans. Contr. Sys. Tech., vol. 4, no. 3, pp. 304-310, 1996 https://doi.org/10.1109/87.491205
  4. C. Y. Su, T. P. Leung, and Y. Stepanenko, 'Real-time implementation of regressor-based sliding mode control algorithm for robotic manipulator,' IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 71-79, 1993 https://doi.org/10.1109/41.184823
  5. B. Brogliato, R. Ortega and R. Lozano, 'Global tracking controller for flexible joint manipulators : A comparative study,' Automatica, vol. 31, no. 7, pp. 941-956, 1995 https://doi.org/10.1016/0005-1098(94)00172-F
  6. T. Umeno, T. Kaneko and Y. Hori, 'Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators,' IEEE Trans. Ind. Electron., vol. 40, no. 5, pp. 473-486, 1993 https://doi.org/10.1109/41.238016
  7. L. -X. Wang, A Course in Fuzzy Systems and Control, NJ: Prentice-Hall, 1997
  8. R. Ordonez and K. M. Passino, 'Stable multi-input multi-output adaptive fuzzy/neural control,' IEEE Trans. Fuzzy Systems, vol. 7, no. 3, pp 345-353, Jun, 1999 https://doi.org/10.1109/91.771089
  9. C. T. Chiang; and C. S. Lin, 'CMAC with general basis functions,' Neural Networks, vol. 9, no. 7, pp. 1199-1211, 1996 https://doi.org/10.1016/0893-6080(96)00132-3
  10. S. H. Lane, D. A. Handelman, and J. J. Gelfand, 'Theory and development of higher-order CMAC neural networks,' IEEE Contr. Syst. Mag., pp. 23-30, 1992 https://doi.org/10.1109/37.126849
  11. Y. Kim and F. L. Lewis, 'Optimal design of CMAC neural-network controller for robot manipulators,' IEEE Trans. Sys. Man and Cyber.-Part C: Appl. and Rev., vol. 30, no. 1, pp. 22-31, 2000 https://doi.org/10.1109/5326.827451
  12. M. Spong and M. Vidyasagar, Robot Dynamics and Control, Wiley:NY, 1989
  13. B. S. Chen, C. H. Lee and Y. C. Chang, '$H^{\infty}$ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,' IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp 32-43, Feb., 1996 https://doi.org/10.1109/91.481843