• Title/Summary/Keyword: CM Capability

Search Result 245, Processing Time 0.023 seconds

Study of Parameters on the Electrochemical Properties of Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극의 전기화학적 특성에 미치는 변수 연구)

  • Kim, Ick-Jun;Yang, Sun-Hye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.355-356
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black: PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 carbon black : PTFE = 80 : 15 : 5 wt%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between 0.5 $mA/cm^2$ ~ 100 $mA/cm^2$ current density and the lowest ESR.

  • PDF

Electrochemical Performance of Carbon-PTFE Electrode with High Capacitance and Density for EDLC (EDLC용 고용량, 고밀도 Carbon-PTFE 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Je;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.541-542
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black : PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP 20 : carbon black : PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between $0.5mA/cm^2{\sim}100mA/cm^2$ current density and the lowest ESR.

  • PDF

Isolation and characterization of a lytic Salmonella Typhimurium-specific phage as a potential biofilm control agent

  • Su-Hyeon Kim;Mi-Kyung Park
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.42-51
    • /
    • 2023
  • This study aimed to characterize a lytic Salmonella Typhimurium-specific (ST) phage and its biofilm control capability against S. Typhimurium biofilm on polypropylene surface. ST phage was isolated, propagated, and purified from water used in a slaughterhouse. The morphology of ST phage was observed via transmission electron microscopy. Its bactericidal effect was evaluated by determining bacterial concentrations after the phage treatment at various multiplicities of infection (MOIs) of 0.01, 1.0, and 100. Once the biofilm was formed on the polypropylene tube after incubation at 37℃ for 48 h, the phage was treated and its antibiofilm capability was determined using crystal violet staining and plate count method. The phage was isolated and purified at a final concentration of ~11 log PFU/mL. It was identified as a myophage with an icosahedral head (~104 nm) and contractile tail (~90-115 nm). ST phage could significantly decrease S. Typhimurium population by ~2.8 log CFU/mL at an MOI of 100. After incubation for 48 h, biofilm formation on polypropylene surface was confirmed with a bacterial population of ~6.9 log CFU/cm2. After 1 h treatment with ST phage, the bacterial population in the biofilm was reduced by 2.8 log CFU/cm2. Therefore, these results suggest that lytic ST phage as a promising biofilm control agent for eradicating S. Typhimurium biofilm formed on food contact surfaces.

A Study on the Characteristic of Sound Absorption of the Polyester Non-Woven Fabrics Used for the Automobile Sound Absorption Material (폴리에스터 부직포를 이용한 자동차용 흡음재의 흡음특성에 관한 연구)

  • 변홍식;이태관
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.427-434
    • /
    • 2001
  • The sound absorption materials With polyester (PET) were prepared for automobile. They consist of 3 layers with different size of PET fiber (3 and 15 deniers) in order to optimize the characteristic of sound absorption, and with various densities (895~1790 g/$cm^2$) by controlling the weight of PET of each layer. They were also compared with the commercial sound absorption materials made of glass wool. It was shown that the new PET had better absorption capability in both high and low frequency regions than that of the commercial material. It was revealed also that the density and the thickness of PET played an important role to determine the capability of sound absorption. The NRC (noise reduction coefficient) was increased by 22-39% with optimized PET sound absorption material. It should be noted that the PET can substitute the glass wool, a commercial sound absorption material, in view of environment and as well as recycle capability of sound absorption.

  • PDF

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

Effects of Vth adjustment ion implantation on Switching Characteristics of MCT(MOS Controlled Thyristor) (문턱전압 조절 이온주입에 따른 MCT (MOS Controlled Thyristor)의 스위칭 특성 연구)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jong-Il;Kwak, Changsub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • Current driving capability of MCT (MOS Controlled Thyristor) is determined by turn-off capability of conducting current, that is off-FET performance of MCT. On the other hand, having a good turn-on characteristics, including high peak anode current ($I_{peak}$) and rate of change of current (di/dt), is essential for pulsed power system which is one of major application field of MCTs. To satisfy above two requirements, careful control of on/off-FET performance is required. However, triple diffusion and several oxidation processes change surface doping profile and make it hard to control threshold voltage ($V_{th}$) of on/off-FET. In this paper, we have demonstrated the effect of $V_{th}$ adjustment ion implantation on the performance of MCT. The fabricated MCTs (active area = $0.465mm^2$) show forward voltage drop ($V_F$) of 1.25 V at $100A/cm^2$ and Ipeak of 290 A and di/dt of $5.8kA/{\mu}s$ at $V_A=800V$. While these characteristics are unaltered by $V_{th}$ adjustment ion implantation, the turn-off gate voltage is reduced from -3.5 V to -1.6 V for conducting current of $100A/cm^2$ when the $V_{th}$ adjustment ion implantation is carried out. This demonstrates that the current driving capability is enhanced without degradation of forward conduction and turn-on switching characteristics.

Improved Power Capability with Pyrolyzed Carbon Electrodes in Micro Direct Photosynthetic/Metabolic Bio-fuel Cell

  • Moriuchi, Takeyuki;Morishima, Keisuke;Furukawa, Yuji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • As a biofuel source, direct photosynthetic/metabolic biofuel cells (DPBFC) use cyanobacteria whose photosynthesis and metabolization reactions can convert light energy to electricity, In our previous work, we fabricated a prototype micro-DPBFC that could generate a peak current density of $36{\mu}A/cm^{2}$ and a maximum power density of $270nW/cm^{2}$. In this study, we improve on the previous results by using carbon micro electromechanical systems (C-MEMS), formed from the pyrolysis of patterned photoresist, to fabricate carbon electrodes of an arbitrary shape and controlled porosity to increase the surface area. With these new C-MEMS electrodes, the maximum power density of the micro-DPBFC was $516nW/cm^{2}$, a performance twice as good as the results of our previous work.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Strategy for Various CM Applications based on Comparative Case Analysis (사례 비교분석을 통한 CM 적용 다양화 방안 - 발주자 특성 및 사업특성을 중심으로 -)

  • Kim, Namjoon;Jung, Youngsoo;Kang, Seunghee;Shin, Dongwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • Domestic CM market has continued to grow since the enactment of CM policies in 1996. In addition, future CM market is forecasted to have potential high growth. Therefore, it is necessary to apply various CM business models reflecting the owner's requirements and characteristics in order to improve in the CM industry and to strengthen the competitiveness in the overseas construction market. In this context, the purpose of this study is to suggest strategies of various CM applications based on comparison of 4 cases analyzed by 'business weight' and 'business depth' in terms of business function as well as by the types of 'CM market' and 'CM practice'. Result of this comparative analysis shows that each case presents differences in terms of type, business weight, and business depth of CM practice. However, domestic public CM services are currently being challenged to strengthen capability throughout the project life-cycle against the limitation of government's CM policies focused on the construction supervision. In order to address this problem, this study proposes the strategies of various CM applciations from several different perspectives

Assessment of Risk Management Practices of CM Enterprise: The Need for an Enterprise-level Risk Management Framework (CM기업 현장운영 리스크 관리 실태 분석을 통한 효율적 관리 방안 제시)

  • Park, Kyungmo;Lee, Hyun Woo;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.66-73
    • /
    • 2014
  • The Korean construction industry has been severely impacted by the 2008 global financial crisis, which resulted in a significant reduction in the overall contract amount. For survival, many construction management (CM) companies had to adapt a strategy of lowering bid prices to maintain their competitiveness. As a result of the strategy, companies faced a number of issues including their decreased capability in risk management. However, most risk management-related studies focused on construction risk management, yet these studies lacked consideration of enterprise-level risk management practices. To fill the gap, the objectives of the present study are (1) to investigate, the risk management practices of Korean CM companies, (2) to identify factors that determine efficient enterprise-level risk management practices, and (3) to propose a module for the development of enterprise-level risk management. Lastly, the efficiency of the proposed development module was validated by using a survey.