• Title/Summary/Keyword: CIM(Ceramic Injection Molding)

Search Result 8, Processing Time 0.035 seconds

Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding (판상제품의 세라믹 사출 시 공정변수 영향 분석)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2587-2593
    • /
    • 2014
  • Ceramic Injection Molding (CIM) is one of wide used processes in industry field and the applications are gradually being expanded to parts of medical and electric devices. In this study, the CIM process were analyzed with FEM and process parameters were studied and analyzed the effect on product quality. The shape of simple flat plate was compared to the shapes with the hole, with the round corner portion or with the side wall portion. If there are holes then the hole around the uneven density distribution and the defects such as weld lines could be occurred. The Large radius of the corners of the product give good formability and fluidity. Not only the shape parameters of product but also the process parameters during CIM are studied. The simulation results showed that the process parameters of temperature, initial fractions and velocity are important design parameters to improve the quality of products.

Study for Mechanical Strength according to Thickness of Specimen in the Ceramic Injection Molding Process (세라믹 사출공정에서 시편의 두께에 따른 기계적 강성 연구)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3396-3402
    • /
    • 2014
  • The importance of shape design for strength is highly regarded when applied to thin plate products in Ceramic Injection Molding (CIM), such as cases for electronic goods. This study analyzed the characteristics of the mechanical strength of CIM product by measuring the flexural strength and elastic modulus through a 3-point bending test according to the thickness of a thin plate test piece prepared by CIM. The specimen with a thickness of 0.48mm required a 82.9~94.5N fracture load, whereas a 1.0mm thick test piece required 233.6~345.8N. The increase in thickness by 0.5mm resulted in a 3-fold increase in the fracture load, whereas the elastic modulus decreased by 20%. The thicker the specimen, the lower relative density and surface hardness of the specimen. This is because the thicker the specimen, the lower the powder fraction of the ceramic mixture, and the material properties partially change after sintering.

A Study on Injection Moldability of a Ceramic Material (세라믹재료의 사출성형성에 대한 연구)

  • 나병철;윤재륜;오박균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-71
    • /
    • 1990
  • The fabrication of ceramic machine components by injection molding(CIM : Ceramic Injection Molding) is critically dependent on the shaping and binder extraction techniques. Injection molding is of keen interest to ceramic industries because CIM is suitable for making an intricate shape and manufacturing cost is lower than other process when production scale is large. The success of the molding process is dependent on the correct formulation of the organic vehicle and the achievement of optimum filler loading. Fine alumina powders and polyethylene binder systems were employed to prepare moldable blend then produce a simple specimen by compression molding. Flow characteristics of the mixture was evaluated by viscosity measurement. Optimum binder system and ceramic volume loading for injection molding were determind. A good debinding technique was utilized to improve the quality of debinded parts and save the debinding time. The simple ceramic part was successfully sintered after debinding and its microstructure examined with SEM revealed good consolidation.

Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with Ceramic Injection Molding Technology (세라믹 사출성형기술로 제조한 1-3형 압전복합체의 물성 평가)

  • Shin, H.Y.;Kim, J.H.;Lim, S.J.;Im, J.I.
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.648-653
    • /
    • 2011
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol% of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol% of the PZT ceramics increased up to 30 vol% and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

FEA for Fabrication Process of PZT Preform Using CIM (CIM을 이용한 PZT 프리폼의 제조공정에 대한 유한요소해석)

  • Shin, Ho-Yong;Kim, Jong-Ho;Jang, Jong-Soo;Baek, Seung-Min;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.700-707
    • /
    • 2009
  • This paper described finite element analysis (FEA) for fabrication processes of PZT perform using ceramic injection molding (CIM). The viscosity and the PVT characteristics of the manufactured PZT feedstock were measured. The filling patterns, pressure and temperature distributions of the preform were analyzed with TIMON 3D packages during CIM process. The geometrical variables such as gate type, location, and base thickness of the preform were considered. Also the fabrication conditions of the preform were optimized during the entire CIM process. Based on the simulated results, the various good perform was easily fabricated with the CIM process.

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness

  • Seo, Mi-Young;Kim, Hee-Seung;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.469-471
    • /
    • 2006
  • The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.

Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with CIM Technology (CIM 기술로 제조한 1-3 형 압전복합체의 물성 평가)

  • Im, J.I.;Shin, S.Y.;Kim, J.H.;Lim, S.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.196-199
    • /
    • 2012
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol. % of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol. % of the PZT ceramics increased up to 30 vol. % and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

  • PDF

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.