• Title/Summary/Keyword: CICC

Search Result 42, Processing Time 0.026 seconds

Stability Analysis of Main Coil for Background Magnet is SSTF (Samsung Superconducting Test Facility) (삼성 초전도 시험설비 외부자장 발생용 자석의 주 코일 안정성 해석)

  • ;王秋良
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.12-16
    • /
    • 2000
  • The mission of SSTF is test of superconducting cables for KSTAR magnets. To make realistic environment for superconductor in SSTF, background magnets are required. Cable-in-conduit conductors (CICC) are widely used for large scale superconducting magnets such as ITER and KSTAR. Main design criteria for conductor of superconducting magnets are stability, operating margin and cable cooling requirement, caused by peak field and the gradient of fields with respect to time, in system. ZERODEE which used energy balance method, is applied for the calculation of stability. To increase conductor performance, three different strands, such as HP-I, HP-II, and HP-III, are tested. The present configuration of CICC is used for main coils of background magnet in SSTF and Central Solenoid coils of KSTAR magnets.

  • PDF

Moving Mesh Application for Thermal-Hydraulic Analysis in Cable-In-Conduit-Conductors of KSTAR Superconducting Magnet

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Keeman;Jinliang He
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.522-531
    • /
    • 2002
  • In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.

Investigation on the Loop Current in the CICC Superconducting Magnet (관내연선도체 초전도 자석에서 루프 전류의 형성에 관한 연구)

  • 김석호;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • The fast current and field ramp-up experiment was done with the superconducting magnet that is made of three non-insulated strand CICC (Cable-In- Conduit Conductor). The shunt the unbalanced current magnet enabled the unbalanced current measurement which is believed to be associated with the loop current. To explain the generation of the loop current during the current ramp up. the steady-state three strand loop current model was proposed. This model gives an explanation for the relation between the loop current and the twist geometry of the strands. According to this model. The twisr geometry and the surface contact resistance of the strand has significant influence on the generation of the loop current especially in the large superconducting magnet.

  • PDF

A Study on Quench Characteristics of CICC For Tokamak by Pulse Current (토카막용 CICC의 펄스 전원에 대한 퀜치특성 연구)

  • Lee, S.J.;Chu, Y.;Kim, H.M.;Lee, J.Y;Kim, T.J.;Ko, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.256-258
    • /
    • 1999
  • The quench characteristics of cable consisted of superconducting strand for Tokamak system are observed and analyzed. The superconducting strands chrome-plated are twisted into cable. This cable was wound on bobbin and quench test is carried out by pulse source. At about 2500A the cable quenched.

  • PDF

Transcriptional Profiling of the Trichoderma reesei Recombinant Strain HJ48 by RNA-Seq

  • Huang, Jun;Wu, Renzhi;Chen, Dong;Wang, Qingyan;Huang, Ribo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1242-1251
    • /
    • 2016
  • The ethanol production of Trichoderma reesei was improved by genome shuffling in our previous work. Using RNA-Seq, the transcriptomes of T. reesei wild-type CICC40360 and recombinant strain HJ48 were compared under fermentation conditions. Based on this analysis, we defined a set of T. reesei genes involved in ethanol production. Further expression analysis identified a series of glycolysis enzymes, which are upregulated in the recombinant strain HJ48 under fermentation conditions. The differentially expressed genes were further validated by qPCR. The present study will be helpful for future studies on ethanol fermentation as well as the roles of the involved genes. This research reveals several major differences in metabolic pathways between recombinant strain HJ48 and wild-type CICC40360, which relates to the higher ethanol production on the former, and their further research could promote the development of techniques for increasing ethanol production.

Present Status of the KSTAR Superconducting Magnet System Development (KSTAR 초전도자석계통 개발현황)

  • Park, H.K.;Kim, K.M.;Park, K.R.;Lim, B.S.;Lee, S.I.;Chung, W.H.;Chu, Y.;Baek, S.H.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.298-300
    • /
    • 2003
  • The KSTAR superconducting magnet system consists of 16 TF (Toroidal Field) and 14 PF (Poloidal Field) coils. Both of the TF and PF coil system use internally-cooled Cable-In-Conduit Conductors (CICC). The major achievement in KSTAR magnet system development includes the development of CICC, the development of a full size TF model coil, the development of a background magnetic field generation coil system, the construction of a large scale superconducting magnet. TF and PF coils are in the stage of the fabrication for the KSTAR completion in the year 2005.

  • PDF