• Title/Summary/Keyword: CHO oxidation

Search Result 769, Processing Time 0.02 seconds

Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings (Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동)

  • Kim, Jung-Wook;Jeon, Jun-Ha;Cho, Gun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Oxidation Stability of PAO Oils Determined by Differential Scanning Calorimetry

  • Shim, Joosup;Cho, Wonoh;Chung, Keunwo
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 1996
  • The suitability of a pressure differential scanning calorimetry (PDSC) in monitoring the quality of synthetic base fluids has been investigated using polyalphaolefin (PAO) oils as an example. Induction period meassured at 170, 180 and 19$0^{\circ}C$, and 3.53 MPa oxygen pressure was applied to characterize their oxidation stability. The PDSC method has proven to be simple and repeatable and requires only small sample size for testing. More importantly, it can be applied in differentiating the oxidation performance quality of PAO oils and is versatile enough for use in studying kinetic aspects of PAO oil oxidation which include the effect of temperature and antioxidant concentration. Additionally, the method appears to correlate well with a rotary bomb oxidation test (RBOT).

A Study on Treatment of Livestock wastewater using Fenton Oxidation and Zeolite Adsorption Process (Fenton 산화공정과 Zeolite 흡착공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Kim, Youn-Jeong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.505-510
    • /
    • 2005
  • The objective of this study was to remove non-biodegradable matters and ammonia ion in livestock wastewater using Fenton oxidation and Zeolite adsorption process. After coagulation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. Zeolite as cation adsoption process was used to remove ammonia ion in 2nd treatment water. As a result of treatment using these processes, NBDCOD removal efficiency was over 90% and ammonia ion was almost removed. Most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater wasn't detected after Fenton oxidation process.

Characterization of Sulfur Oxidation by an Autotrophic Sulfur Oxidizer, Thiobacillus sp. ASWW-2

  • Lee Eun Yaung;Cho Kyung-Suk;Ryu Hee Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.48-52
    • /
    • 2000
  • An autotrophic sulfur oxidizer, Thiobacillus sp. ASWW-2, was isolated from activated sludge, and its sulfur oxidation activity was characterized. Thiobacillus sp. ASWW-2 could oxidize elemental sulfur on the broad range from pH 2 to 8. When 5-50 g/L of elemental sulfur was supplemented as a substrate, the growth and sulfur oxidation activity of Thiobacillus sp. ASWW-2 was not inhibited. The specific sulfur oxidation rate of strain ASWW-2 decreased gradually until sulfate was accumulated in medium up to 10 g/L. In the range of sulfate concentration from 10 g/L to 50 g/L, the sulfur oxidation rate could keep over $2.0g-S/g-DCW{\cdot}d$. It indicated that Thiobacillus sp. ASWW-2 has tolerance to high concentration of sulfate.

  • PDF

Identification of Ceftiofur Oxidation Products by High-Performance Liquid Chromatography/Electrospray Ionization/Tandem Mass Spectrometry

  • Lim, Young-Hee;Park, Deok-Hie;Youn, Yeu-Young;Kim, Kyung-Hoon;Cho, Hye-Sung
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.16-19
    • /
    • 2011
  • Oxidation products of ceftiofur were formed in hydrogen peroxide solution. The structures of the ceftiofur oxidation products were characterized by high-performance liquid chromatography/electrospray ionization/tandem mass spectrometry (HPLC/ESI/MS/MS). The products were identified as compounds oxidized at the sulfur of a cephem ring. For further analysis, experiments were performed using $O^{18}$-labeled hydrogen peroxide. In addition, density-functional calculations were carried out for six possible oxidation products to support the experimental results.

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄피막의 광 전기분해 특성에 대한 연구)

  • Park, Seong-Yong;Cho, Won-Il;Cho, Byung-Won;Lee, Eung-Cho;Yun, Kyung-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.47-56
    • /
    • 1990
  • Pure titanium rods were oxidized by anodic oxidation, furnace oxidation and flame oxidation and used as a electrode in the photodecomposition of water. The maximum photoelectrochemical conversion efficiency(${\eta}$) was found for flame oxidized electrode ($1200^{\circ}C$ for 2 min in air), 0.8 %. Anodically oxidized electrodes have minimum photoelectrochemical conversion efficiencies, 0.3 %. Furnace oxidized electrode ($800^{\circ}C$ for 10min in air) has 0.5% phtoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The efficiency shows a parallelism with the presence of the metallic interstitial compound $TiO_{O+X}$(X < 0.33) at the metal-semiconductor interface, the thickness of the sub oxide layer and that of the external rutile scale.

  • PDF

Oxidation Behaviors of Porous Ferritic Stainless Steel Support for Metal-supported SOFC

  • Moon, I.J.;Lee, J.W.;Cho, H.J.;Choi, G.M.;Sohn, H.K.
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.196-200
    • /
    • 2010
  • Recently porous metal has been used as supporting metal in planar type SOFC. In order to search optimum alloys for porous metal support and estimate the stability of metal-supported SOFC at high temperature, it is necessary to investigate the oxidation behaviors of porous material for metal support in comparison with dense material. Oxidation tests of porous and dense stainless steels were conducted at $600^{\circ}C$ and $800^{\circ}C$. Since the specific surface area of porous material is much larger than that of dense material, surface area should be considered in order to compare the oxidation rate of porous stainless steel with that of dense stainless steel. The specific surface area of porous body was measured using image analyzer. The weight gain of porous stainless steel was much greater than those of dense stainless steels due to its larger specific surface area. considering the specific surface area, the oxidation rate of porous stainless steel is likely to be the same as that of dense stainless steel with the same surface area. The change in chromium content in stainless steel during oxidation was also investigated. The experimental result in chromium content in stainless steel during oxidation corresponded with the calculated value. While the change in chromium content in dense stainless steel during oxidation is negligible, chromium content in porous stainless steel rapidly decreases with oxidation time due to its large specific surface area. The significant decrease in chromium content in porous stainless steel during oxidation may affect the oxidation resistance of porous stainless steel support and long term stability of metal-supported SOFC.

Surface Passivation of Tunnel Silicon Oxide Grown by Ozone Oxidation (오존 산화에 의해 형성된 터널 실리콘 산화막의 표면 패시베이션)

  • Baek, Jong Hoon;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.341-344
    • /
    • 2018
  • In order to achieve a high efficiency for the silicon solar cell, a passivation characteristic that minimizes the electrical loss at a silicon interface is required. In this paper, we evaluated the applicability of the oxide film formed by ozone for the tunnel silicon oxide film. To this end, we fabricated the silicon oxide film by changing the condition of ozone oxidation and compared the characteristics with the oxide film formed by the existing nitric acid solution. The ozone oxidation was formed in the temperature range of $300{\sim}500^{\circ}C$ at an ozone concentration of 17.5 wt%, and the passivation characteristics were compared. Compared to the silicon oxide film formed by nitric acid oxidation, implied open circuit voltage (iVoc) was improved by ~20 mV in the ozone oxidation and the ozone oxidation after the nitric acid pretreatment was improved by ~30 mV.