• Title/Summary/Keyword: CHIP

Search Result 7,308, Processing Time 0.039 seconds

Fabrication of Hydrophobic/Hydrophilic Pattern as a Template for DNA Chip Microaray (DNA Chip Microarrays를 위한 template로서 소수성 패턴의 제작)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.472-475
    • /
    • 2004
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

A Study for Accelerated Life Testing and Failure Analysis of Chip Varistor (Varistor 의 ALT(Accelerated Life Testing) 설계 및 주 고장모드 분석)

  • Chang Woo-Sung;Lee Jun-Hyuk;Lee Kwan-Hun;Oh Young-Hwan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.51-67
    • /
    • 2005
  • General chip SMD parts(chip resistance, chip capacitor, chip varistor etc.) are very wide sed electronics parts for IT units. But, failure modes are indistinct for these chip parts. In factory and field the failure modes are recognized to accidental failure mope caused by potential defect. In this paper used chip varistor ALT(Accelerate Life Test) test for verify general failure modes in chip SMD parts. Also the results are useful for general chip SMD ALT tests.

  • PDF

Assessment of cutting performance and chip breaking characteristics with a nondimensional parameter consists of cutting condition and tool shape factor(l) -Orthogonal cutting- (절삭 조건과 공구 형상 인자로 구성된 무차원 파라미터에 의한 절삭 성능 및 칩절단 특성 평가(I))

  • LEE, Young-Moon;CHOI, Won-Sik;SEO, Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.179-184
    • /
    • 1994
  • In this study a nondimensional parameter, feed/land length(F/L) was introduced, and using this parameter, cutting performance and chip breaking characteristics of the groove and the land angle type chip formers were assessed. Specific cutting energy consumed and shape of broken chip with its breaking cycle time were appraised to find out the ranges of F/L value where efficient cutting and effective chip breaking could be achieved. C type chip was found out to be the most preferable in terms of cutting efficiency.

  • PDF

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

Prediction of Chip Forms using Neural Network and Experimental Design Method (신경회로망과 실험계획법을 이용한 칩형상 예측)

  • 한성종;최진필;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips (플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

Scheduling Methodology for MCP(Multi-chip Package) with Layer Sequence Constraint in Semiconductor Package (반도체 Package 공정에서 MCP(Multi-chip Package)의 Layer Sequence 제약을 고려한 스케쥴링 방법론)

  • Jeong, Young-Hyun;Cho, Kang-Hoon;Choung, You-In;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • An MCP(Multi-chip Package) is a package consisting of several chips. Since several chips are stacked on the same substrate, multiple assembly steps are required to make an MCP. The characteristics of the chips in the MCP are dependent on the layer sequence. In the MCP manufacturing process, it is very essential to carefully consider the layer sequence in scheduling to achieve the intended throughput as well as the WIP balance. In this paper, we propose a scheduling methodology considering the layer sequence constraint.

Enteric Virus Detection from Environmental Sample by Oligonucleotide DNA Chip (올리고뉴클레오티드 DNA Chip을 이용한 환경시료에서의 장관계바이러스 검출)

  • 김정미;윤성욱;지영미;윤재득;정용석
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.186-191
    • /
    • 2002
  • The usefulness of oligonucleotide DNA chip was evaluated for detection and primary level identification of major waterborne viruses in environmental samples. The enteric waterborne viruses included enterovirus, adenovirus, and rotavirus. Total intracellular RNA of 10 BGM cell plates showing virus-specific cytopathic effects was extracted at the third day after inoculation. The intracellular RNA was then subjected to either enterovirus-specific RT-PCR followed by sequencing analysis, or the DNA chip. Seven out of 10 positive samples in cell culture were positive but the other three sample were turned out to be negative by both RT-PCR and DNA chip analyses. Nucleotide sequencing results and the DNA chip hybridization results of the RT-PCR product were in complete agreement in the identification of the 7 positive samples as enteroviruses. Using the DNA chip, it took only 3∼4 hr to complete detection and primary level identification of target viruses and additional procedures such as gel electrophoresis or nucleotide sequencing were not necessary. We believe that the DNA chip system can be employed as a highly effective and new detection methodology for environmental viruses.

A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component- (선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식-)

  • Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

An Experimental Study on New Type Chip Brakeer(Part 1) (신形 칩折斷具에 관한 實驗的 硏究 (제1보))

  • 손명환;이호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1121-1140
    • /
    • 1992
  • In metal cutting the shape of generated chip varies according to cutting conditions, characteristics of workpiece and geometry of cutting tool. The best surface roughness of machined workpiece is obtained when generating flow type contrinuous chip. If the generated chip is not broken, that is not only tangled workpiece and cutting tool, but also may give damage on the machined surface of workpiece or danger for a operator. The flow type continuous chip may bring the low productivity in high speed any heavy cutting, automatic machining process and non-human factory. There are two type of chip break process ; controlling cutting condition and using chip breaker. In present study we carried out the experiment on new type chip breaker compared with conventional type and proved the efficiency of a new type and showed the chip break condition to be applied in actual metal cutting. In the experiment SM 20 C as a workpiece material and WC as a tool material were used and cutting speed of 30-150m/min, feed of 0.071-0.210mm/rev and depth of cut of 1mm were applied as cutting condition. The results of the experiment are as follows : (1) The mechanism of chip curl can be explained more clearly by plastic flow of workpiece material and moment of shearing force. (2) The most effective radius of curled chip and flat distance from cutting edge is 2.0-2.5mm and 1.5mm in both types. (3) The effective inclination angle of chip break surface and side cutting edge angle are 30.deg.- 45.deg. and 20.deg. in conventional type, while the radius of arc surface, lower arc angle A, upper arc angle B and side cutting edge angle are 3mm, 20.deg.- 45.deg., 0.deg.- 45.deg. and 10.deg.- 20.deg. in new type. (4) The probability to be obtained 100% chip breaking ratio is much higher in new type than in conventional type.