• Title/Summary/Keyword: CHANGE learning model

Search Result 583, Processing Time 0.032 seconds

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

The Theoretical Review of the Feature and Application of Science Teaching Models (과학 교수 모형의 특징과 적용에 대한 이론적 고찰)

  • Cho, Hee-Hyung;Kim, Hee-Kyung;Yoon, Hee-Sook;Lee, Ki-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.557-575
    • /
    • 2010
  • The purpose of the study was to suggest the characteristics and goals of the science teaching model for use as criteria in selecting the appropriate teaching model for science in secondary schools. These characteristics and the goals have been organized based on the analyses of the literature on the teaching and/or instructional model. The teaching models have been classified into four areas, and the characteristics and goals of each area have been summarized as follows: $\cdot$ Traditional models: teaching of scientific knowledge through lectures, acquisition of scientific knowledge through discovery, acquisition of inquiry process skills through inquiry-based teaching/learning $\cdot$ Transitional models: demonstration and discovery as teaching strategies, acquisition of inquiry process skills through inquiry approach, acquisition and change of scientific knowledge $\cdot$ Modernistic model - conceptual change models: differentiation of scientific knowledge, exchange of misconceptions for scientific concepts - learning cycle models: conceptual differentiation, exchange of misconceptions, acquisition of science process skills Also described in this paper are the model's characteristics and goals that can be used as the criteria for selecting the appropriate teaching model for the subject that will be taught.

Effect of MBTI Personality Type on Programming Learning Attitude (MBTI 성격유형이 프로그래밍 학습동기에 미치는 영향)

  • Kim, Semin;You, Kangsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.606-608
    • /
    • 2018
  • In this study, MBTI personality type test was conducted for high school students in engineering, and then programming class was conducted to analyze students' learning attitudes. To do this, we designed learning based on creative problem solving model and integrated thinking model. Students classify I (introvert) type and O (extrovert) type as a primary and T (thinking type) and P (cognitive type) as secondary. As a result of this study, learning motivation factors according to personality type were found. Therefore, in future research, we want to study the change of learning method according to learner personality type.

  • PDF

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Case Study: PBL-Driven Healthcare Data Science Specialization and Learning Performance (사례연구: PBL기반 보건의료 데이터 사이언스 특성화교육과 학습성과)

  • Hwa Gyoo Park;Jong Ho Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • This paper aims to share the course, performance and implications of Project-Based Learning (PBL) education in healthcare data science (HDS). The HDS team of the business group of Soonchunhyang University, which was selected for the health care field of 'University Innovation Project', considered that the health care IT-based education of the current university differs greatly from the rapidly changing health care 3.0 environment of the fourth industry, and emphasized the PBL practice-oriented specialization program as a learning model. The PBL focused on self-directed learning experiences, real analysis problems, and team-oriented classes. In other words, it was implemented with three specialized strategies: 'Field Inside Education', 'Fusion-type Track Education', and 'Training to strengthen resilience and change response'. This collaborative, practical learning experience, etc. resulted in significant results. The results were recognized as being rated A by the Korea Research Foundation and the comprehensive evaluation, and the results were significantly elevated through the analysis of the student survey and the results index.

The Effects of Learning Cycle Model on the Change of Electricity Conceptions of Elementary Students (순환학습 모형 적용이 초등학생의 전기개념 변화에 미치는 효과)

  • 이형철;남만희
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.2
    • /
    • pp.217-228
    • /
    • 2001
  • The purpose of this study was to investigate the effect of learning cycle model on the changes of electricity conceptions of elementary students. Four classes in forth grade of an elementary school in Busan were selected and two of them were served as experimental group and the others as control group. The experimental group were taught the unit of "Light an electric bulb" in elementary science textbook with teaching model based on teaming cycle and the control group with traditional teaching style. The instruction effects were analyzed through pre and post-test results using questionnaire on the electricity. The results of pre-test showed that there was not a significant difference between experimental group and control group at .05 level, so two groups could be regarded as homogeneous. The mean score of experimental group was significantly higher than that of control group on the post-test at .05 level. And within-group comparison revealed that both groups made improvement on the mean score and that the improvement of each group had significant difference at .05 level. Above results said that the teaching model based on learning cycle, which focuses on hands-on activity and considers each student as an active subject, was more effective than traditional teaching style in improving the formation of scientific conceptions on electricity.ectricity.

  • PDF

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

Development of a model to predict Operating Speed (주행속도 예측을 위한 모형 개발 (2차로 지방부 도로 중심으로))

  • 이종필;김성호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • This study introduces a developed artificial neural networks(ANN) model as a more efficient and reliable prediction model in operating speed Prediction with the 85th percentile horizontal curve of two-way rural highway in the aspect of evaluating highway design consistency. On the assumption that the speed is decided by highway geometry features, total 30 survey sites were selected. Data include currie radius, curve length, intersection angle, sight distance, lane width, and lane of those sites and were used as input layer data of the ANN. The optimized model structure was drawn by number of unit of hidden layer, learning coefficient, momentum coefficient, and change in learning frequency in multi-layer a ANN model. To verify learning Performance of ANN, 30 survey sites were selected while data in obtained from the 20 cites were used as learning data and those from the remaining 10 sites were used as predictive data. As a result of statistical verification, the model D of 4 types of ANN was evaluated as the most similar model to the actual operating speed value: R2 was 85% and %RMSE was 0.0204.

Estimation of Heading Date of Paddy Rice from Slanted View Images Using Deep Learning Classification Model

  • Hyeokjin Bak;Hoyoung Ban;SeongryulChang;Dongwon Gwon;Jae-Kyeong Baek;Jeong-Il Cho;Wan-Gyu Sang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.80-80
    • /
    • 2022
  • Estimation of heading date of paddy rice is laborious and time consuming. Therefore, automatic estimation of heading date of paddy rice is highly essential. In this experiment, deep learning classification models were used to classify two difference categories of rice (vegetative and reproductive stage) based on the panicle initiation of paddy field. Specifically, the dataset includes 444 slanted view images belonging to two categories and was then expanded to include 1,497 images via IMGAUG data augmentation technique. We adopt two transfer learning strategies: (First, used transferring model weights already trained on ImageNet to six classification network models: VGGNet, ResNet, DenseNet, InceptionV3, Xception and MobileNet, Second, fine-tuned some layers of the network according to our dataset). After training the CNN model, we used several evaluation metrics commonly used for classification tasks, including Accuracy, Precision, Recall, and F1-score. In addition, GradCAM was used to generate visual explanations for each image patch. Experimental results showed that the InceptionV3 is the best performing model in terms of the accuracy, average recall, precision, and F1-score. The fine-tuned InceptionV3 model achieved an overall classification accuracy of 0.95 with a high F1-score of 0.95. Our CNN model also represented the change of rice heading date under different date of transplanting. This study demonstrated that image based deep learning model can reliably be used as an automatic monitoring system to detect the heading date of rice crops using CCTV camera.

  • PDF

Deep Learning-based Happiness Index Model Considering Social Variables and Individual Emotional Index (사회적 변수와 개개인의 감정지수를 함께 고려한 딥러닝 기반 행복 지수 모델 설계)

  • Sumin Oh;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.489-493
    • /
    • 2024
  • Happiness index is a measurement system for understanding collective happiness. As values change, studies have been proposed to add the value of behavior to the happiness index. However, there is a lack of studies analyze the relationship using individual emotions. Using a deep learning model, we predicted happiness index using social variables and individual emotional index. First, we collected social and emotional variables from January 2005 to December 2020. Second, we preprocessed the data and identified significant variables. Finally, we trained deep learning-based regression model. Our proposed model was evaluated using 5-fold cross validation. The proposed model showed 90.86% accuracy on test sets. Our model will be expected to analyze the significant factors of country-specific happiness index.