• Title/Summary/Keyword: CHANGE OF TEMPERATURE

Search Result 10,052, Processing Time 0.044 seconds

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

Ammonia Adsorption Capacity of Zeolite X with Different Cations (Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구)

  • Park, Joonwoo;Seo, Youngjoo;Ryu, Seung Hyeong;Kim, Shin Dong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.355-359
    • /
    • 2017
  • Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

Use of Geographical Information Systems in Analyzing Large Area Distribution and Dispersal of Rice Insects in South Korea (벼 해충의 분포와 분산의 해석에 있어서 지리정보처리체계의 활용)

  • ;K. L. Heong
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 1993
  • The potential of using GIS in analyzing pest surveillance data was explored. The Spatial Analysis System (SPANS) was used to construct a spatial data base to study pest distributions using pest surveillance data collected from 152 stations in South Korea. The annual spatIal distributions of the striped rice borer(SRB), Chdo suppressalis, showed that high densities started to expand in the early 1980s, reaching a peak in 1988. The pattern change appears to be related to cultivation of japonica and indica-japonica hybrid varieties in South Korea. Japo7l!ca varieties have longer duration resulting in the SRB haVlng more time to mature and hibernate in wmter. The locus of SRB spread appears to be located in the mid-west region near lri, Chun~ Buk Province. High brown planthopper (BPH) populations in South Korea are often related to the early immigration and temperature. The simulated distribution of PPH densities in September using these two factors was compared with the actual distribution obtained using 1990 data. The two density maps corresponded closely excepL for differences in the south eastern valley. By overlaying the simulated map layer with the elevation and rice area maps, more specific BPH risk zones could be identified.

  • PDF

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Contamination of Green Vegetable Juice by E. coli O157:H7 during Storage (E. coli O157:H7에 의한 녹즙 저장 환경에서의 미생물학적 오염도 조사)

  • Lim, Eun Seob;Koo, Ok Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.446-451
    • /
    • 2015
  • The market for green vegetable juice (GVJ) is growing owing to the increasing demand for healthy food; however data on the safety and quality of GVJ are poorly reported. The objective of this study was to investigate the change in microbial community in GVJ during storage and its contamination by E. coli O157:H7. The microbial community was analyzed via culturable and non-culturable methods at 5, 10, and $25^{\circ}C$ for different storage times. In the non-culturable method, denaturing gradient gel electrophoresis (DGGE) was used. The initial bacterial concentration was $2.92{\times}10^5CFU/mL$, which exceeded the limit prescribed by the Korean Food Hygiene law. The results of the DGGE analysis indicated that the microbial community during storage was diverse and the spoilage lactic acid bacteria were prevalent at a later stage. Other bacteria such as Rahnella, Citrobacter, Pseudomonas, and Cyanobacteria were identified. Thus, the results strongly emphasize the need to pay attention to GVJ production safety, especially with respect to temperature control, in order to prevent the growth of foodborne pathogens such as E. coli O157:H7 and other spoilage bacteria.

Electrochemical Studies on the Lanthanides (란탄족 원소의 전기화학적 환원에 관한 연구 (제 1 보))

  • Park, Jong Min;Gang, Sam U;Do, Lee Mi;Han, Yang Su;Son, Byeong Chan
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.561-568
    • /
    • 1990
  • Voltammetric behavior of some light lanthanide ions (La$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, and Eu$^{3+}$) in various supporting electrolytes has been investigated by several electrochemical techniques. The peak potentials and the peak currents, their dependency on the concentration, temperature and pH effects, the reversibility of the electrode reactions are described. The reduction of La$^{3+}$, Pr$^{3+}$ and Nd$^{3+}$ in 0.1 M lithium chloride proceeds by a three-electron change directly to the metallic state (Ln$^{3+}$ + 3e- → Ln$^0$) and charge transfer is totally irreversible. However, the reduction of Sm$^{3+}$ in 0.1 M tetramethylammonium iodide and Eu$^{3+}$ in 0.1 M lithium chloride proceeds in two stages (Ln$^{3+}$ + e- → Ln$^{2+}$ and Ln$^{2+}$ + 2e- → Ln$^0$). At pH values lower than ca.4 the hydrated lanthanide species (Ln(OH)$^{2+}$) reduced before the lanthanide ions (Ln$^{3+}$) due to the catalytic effect of hydrogen ions, and peak current increase with in the order Eu$^{3+}$ < Sm$^{3+}$ < Nd$^{3+}$ < Pr$^{3+}$ < La$^{3+}$ in differential pulse polarography. Some representative plots of $i_{pc}V^{-1/2} (proportional to current function) vs. V show considerable influence of hydrogen ion/lanthanide ion concentration in cyclic voltammetry. It is shown that a reaction of lanthanide ions with proton and/or water and catalytic reaction is enhanced at lower pH and at decreased lanthanide ion concentration.

  • PDF

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Glucosinolate and isothiocyabate contents according to processing of Kimchi cabbage (Brassica rapa L. ssp. pekinensis) (배추의 가공에 따른 glucosinolates 및 isothiocyanates 함량 변화)

  • Jang, Miran;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.367-373
    • /
    • 2017
  • This study examined the total glucosinolate (GSL) and isothiocyanate (ITC) contents according to different processing conditions; fresh Kimchi cabbage (Brassica rapa L. ssp. pekinensis), salted Kimchi cabbage and kimchi (storage temperature $4^{\circ}C$ and $20^{\circ}C$) using two different cultivars (Bomatnorang and Chunkwang). Four GSL peaks representing gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin were detected in Kimchi cabbage by HPLC and HPLC/MS analysis. The total GSL contents of fresh Kimchi cabbage of Bomatnorang and Chunkwang were $21.37{\pm}1.06{\mu}g/g$ dry weight (DW) and $20.96{\pm}3.33{\mu}g/g$ DW, respectively. After salting, the total GSL contents of salted Kimchi cabbage decreased by 39% and 52% in Bomatnorang and Chunkwang, respectively. Finally, the total GSL contents of kimchi after storage at $20^{\circ}C$ decreased by 83% and 56% in Bomatnorang and Chunkwang, respectively. The extracted ITC contents were analyzed by GC/MS. Three ITC peaks were detected in Kimchi cabbage representing 2-phenylethyl ITC, 3-butenyl ITC and 4-pentenyl ITC. The 2-phenylethyl ITC levels increased during the salting process but this generally fell during storage at $20^{\circ}C$ as kimchi. The 3-butenyl ITC levels of Kimchi cabbage according to processing decreased rapidly due to salting and then decreased slowly during storage as kimchi. The 4-pentenyl ITC of Kimchi cabbage was lost during the salting process. The results for the change in GSL and ITC contents during the kimchi making process will be used in the food industry.

Study on the Performance Evaluation of Colored Asphalt Hot Mixtures through the Usage of Grain-typed Color Additive (알갱이 형태의 유색첨가제를 이용한 칼라 아스팔트 혼합물의 공용성 평가 연구)

  • Lee, Sang-Yum;Ahn, Yong-Ju;Mun, Sung-Ho;Kim, Yeong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.117-122
    • /
    • 2011
  • Asphalt concrete pavement can be widely seen on urban streets, highways, parking lots, and bike trails. Asphalt concrete pavement is relatively temperature sensitive materials due to the viscoelastic behavior, which can be defined as flexible performance in summer and rigid performance in winter. In terms of maintenance, it can be fixed quite easily if damaged. In addition, asphalt concrete pavement is generally found to be black and grey in color. However, several colors can be adopted to change the appearance of plain old boring, black and grey. Generally, there are two types of color systems in hot mix asphalt concrete materials. One system uses colored cementitious material that is applied to pavement surface through coating the surface of the asphalt pavement. The major disadvantage to this system requires a careful skill set to be used on the construction site in order to prevent taking off the cementitious material. The other coloring system colors the asphalt hot mixtures through using color additives. The main advantage to this system is that the asphalt pavement layer is colored using the same techniques that are already used in paving. The disadvantage is that the colors are limited to mainly reds and browns. In this study, a suggested color additive was evaluated, based on rutting, moisture sensitivity, and fatigue cracking performance.

Life Time Prediction and Physical Properties of Chloroprene Rubber Aged by Seawater (클로로프렌 고무의 해수에 의한 물성 변화 및 노화 수명 예측)

  • Lee, Chan Koo;Yun, Ju Ho;Kim, Il;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • Herein, life time prediction based on the deterioration of physical properties of chloroprene rubber (CR)aged by heat and seawater was performed. CR samples were experienced an accelerated test at $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$ for heat aging, and $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ for seawater aging for 20,000 hrs. The change in tensile strength, maximum elongation,hardness was measured. As a result, the decrease in elongation was a major factor causing failure. The life time estimated using an Arrhenius model was 125 years at $23^{\circ}C$ for thermal aging and 9 years at $23^{\circ}C$ for seawater aging. SEM and elemental analysis reveal that cracks were generated and the content of oxygen was increased for CR agined by seawater. FT-IR spectrum shows the new C-O and C = O bonds were generated by the chemical reaction with seawater. Also, the glass transtion temperature was increased and the thermal decomposition was decreased by seawater aging.