• Title/Summary/Keyword: CFT stub columns

Search Result 19, Processing Time 0.02 seconds

Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes (콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

An Experimental Study on Structural Performance of Welded Built-up Square CFT Stub Columns (용접조립 각형 CFT 단주의 구조특성에 관한 실험적 연구)

  • Lee, Seong Hui;Choi, Young Hwan;Yom, Kyong Soo;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.645-653
    • /
    • 2008
  • Welded built-up square tubes are manufactured by flare welding at the center of the column width for cold-formed L-shaped four-piece plates and improved composite effect of concrete and steel by vertical inner anchor. Also, the axial resistance of concrete is increased by the thinness of the steel column, and the composite effect of concrete and steel prevents the steel column from local buckling. In this study, we introduced a manufacturing method of built-up square column steel square concrete-filled tubular column with vertical inner anchor and superior structural performance of the square stub column verified by the structural test for 15 specimens with parameters of shape of tube (built-up square tube, general steel tube), width over thickness of the steel tube (B/t=50, 58, 67) and the strength of concrete (f'c=10MPa, 50MPa).

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression

  • Huang, Yan-Sheng;Long, Yue-Ling;Cai, Jian
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • A method is proposed to estimate the ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression. The ultimate strength of concrete core is determined by using the conception of the effective lateral confining pressure and a failure criterion of concrete under true triaxial compression, which takes into account the difference between the lateral confining pressure provided by the broad faces of the steel tube and that provided by the narrow faces of the steel tube. The longitudinal steel strength of broad faces and that of the narrow faces of the steel tube are calculated respectively due to that buckling tends to occur earlier and more extensively on the broader faces. Finally, the proposed method is verified with experimental results. Corresponding values of ultimate strength calculated by ACI (2005), AISC (1999) and GJB4142-2000 are given respectively for comparison. It is found from comparison that the proposed method shows a good agreement with the experimental results.

Design Equation for Square CFT Columns with Large Width-to-Thickness Ratio (폭두께비가 큰 각형CFT 단주의 설계식)

  • Kim, Sun Hee;Choi, Young Whan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.537-544
    • /
    • 2009
  • The design standards, such as AISC-LRFD (2005) and KBC-2005, specify the maximum width-to-thickness ratio that can be used for computing the strength of the concrete-filled tube (CFT), and do not include any formula for computing the strength when the width-to-thickness ratio is over the limit. This paper proposes a strength equation for CFTs with a large width-to-thickness ratio by acknowledging the fact that the stiffened slender steel platehas substantial postbuckling strength, and that it therefore can be more economical to use it. The equation adopts the concept of effective width,which is very useful for plate analysis. By comparing the strengths of AISC2005, KBC2005, and the proposed method with the results of the experiment, where the width-to-thickness ratio was regarded as the main parameter, the applicability of the proposed method was verified.

Characteristics of Concrete Filled Circular Tubular Stub Columns based on Experiment and Data Analysis (실험 및 데이터 분석에 의한 CFCT 단주 특성)

  • Kang, Hyun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.161-168
    • /
    • 2001
  • The use of composite members to improve the compressive strength of steel structure is a common practice these days and its efficiency has already been proved by several researches and experiments. The result of concrete filled circular tubular(CFCT) stub column tests is introduced in this paper. The main parameter of this test is the ratio of diameter to thickness of circular hollow section. From the test results, the effect of concrete filled in steel tube on the ultimate strength, the deformation capacity and initial stiffness are discussed. The purpose of this paper is to investigate the effect of various parameters and evaluate the compressive strength of confined concrete. It would contribute to a better understanding of CFT structure, further laboratory experimentations are needed for better accurate estimation on its effect.

  • PDF

Strength of Axially Loaded Concrete-Filled Tubular Stub Column. (중심축하중을 받는 콘크리트충전 각형강관단주의 내력)

  • Kang, Chang-Hoon;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2001
  • This paper presents an experimental and analytical study on the behavior of concrete-filled tubular stub columns concentrically loaded in compression to fail. Total eleven specimens were tested and test parameters are the depth-to-thickness ratios of steel tube and the ratio of concrete cylinder strength-to-yield stress of steel tube. Depth-to-thickness ratios of steel tube between 20.22

  • PDF

Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete (콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도)

  • Hwang, Won Sup;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The squash strength and design strength are smaller than the experimental strength of square shaped concrete-filled steel tubular columns in a short concentrically loaded column. This study presents an evaluation procedure accounting for the confining effect of concrete. For the purpose of evaluating a confining effect of concrete, the 3D finite element method was used. The influence of parameters, width-thickness ratios, strength of the concrete and the yield strength of the steel, were examined. The suggested evaluation procedure that assembled three parameters was compared with previous experimental results. Also, the tendency of the confining effect of concrete was examined in the three types of load application.