• Title/Summary/Keyword: CFRP side member

Search Result 9, Processing Time 0.035 seconds

Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section (경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성)

  • Lee, Kil-Sung;Seo, Hyeon-Kyeong;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle (차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구)

  • Lee, Kil-Sung;Yang, In-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight (경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성)

  • 이길성;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

An Experimental Study on the Structural Behavior of Reinforced Concrete Beam with External Adhesion of CFRP Grid (격자형 탄소섬유강화플라스틱의 외부부착 보강에 따른 철근 콘크리트 보의 구조적 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Geon-Woo;Kim, Jin-Sup
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2021
  • The study presents the ductility reinforcement effect of the RC bending member using the CFRP Grid as an experimental result. Experimental variables include a non-reinforced RC bending member (ORI), a bottom reinforced RC bending member (REB), and an RC bending member reinforced at the bottom and side (REBS). The experiment was carried out with four points bending test. As a result of the experiment, it was confirmed that the maximum bending strength increased by 17-20% through reinforcement. In addition, the ductility index calculation results confirmed that the ductility index of REB and REBS increased by 2 and 3 times, respectively, compared to the ORI.

Influence of Stacking Condition on Collision Safety of CFRP Side Member (적층구성이 CFRP 사이드 부재의 충돌안전성에 미치는 영향)

  • Hwang, Woo Chae;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The global demand for reduction in the weight of automobiles has led many countries to focus on the development of hybrid, eco-friendly, and electric cars. Reduction in the weight of materials can both increase fuel efficiency and maximize automobile performance. Therefore, the design of automobile should be inclined towards the safety aspects. but at the same time, it also consider reducing the structural weight of an automobile. In this study, CFRP side members with circular and double hat shaped section was manufactured. The impact collapse tests performed with change of the stacking condition, such as variation of interface number and outerlayer angle. The impact collapse load and absorbed energy were quantitatively analyzed according to the changes in section shapes and stacking condition. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part (탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가)

  • Kim, Kun-Young;Kwak, Sung-Hun;Han, Gyu-Dong;Park, Jin-Seok;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.