• 제목/요약/키워드: CFRP confinement

검색결과 48건 처리시간 0.027초

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

Ultimate strength and strain models proposed for CFRP confined concrete cylinders

  • Berradia, Mohammed;Kassoul, Amar
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.465-481
    • /
    • 2018
  • The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination ($R^2$) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef et al. (2007) which have relatively similar performance to the proposed models.

Combined effect of CFRP-TSR confinement on circular reinforced concrete columns

  • Berradia, Mohammed;Kassoul, Amar
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.41-49
    • /
    • 2017
  • The use of external carbon-fiber-reinforced polymer (CFRP) wraps is one of the most effective techniques existing for the confinement of the circular concrete columns. Currently, several researches have been made to develop models for predicting the behavior of this type of confinement. The disadvantage of the most models, is to not take into account the contribution of the transverse steel reinforcements (TSR) effect, However, very limited models have been recently developed that considers this combined effect and gives less accurate results. This paper presents the development of a new model for the axial behavior of circular concrete columns confined by combining external CFRP warps-and-internal TSR (hoops or spirals) based on the existing experimental data. The comparison between the proposed model and the experimental results showed good agreement comparing to the several existing models. Moreover, the expressions of estimating the ultimate strength and the corresponding strain are simple and precise, which make it easy to use in the design applications.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders

  • Fathi, Mojtaba;Jalal, Mostafa;Rostami, Soghra
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1171-1190
    • /
    • 2015
  • Enhancement of strength and ductility is the main reason for the extensive use of FRP jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP-confined concrete for practical design purposes. This study presents a new approach to obtain strength enhancement of CFRP (carbon fiber reinforced polymer) confined concrete cylinders by applying artificial neural networks (ANNs). The proposed ANN model is based on experimental results collected from literature. It represents the ultimate strength of concrete cylinders after CFRP confinement which is also given in explicit form in terms of geometrical and mechanical parameters. The accuracy of the proposed ANN model is quite satisfactory when compared to experimental results. Moreover, the results of the proposed ANN model are compared with five important theoretical models proposed by researchers so far and considered to be in good agreement.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과 (Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet)

  • 문경태;박상렬;고광민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권2호
    • /
    • pp.13-23
    • /
    • 2017
  • 본 연구는 사각형 콘크리트 압축부재를 CFRP 쉬트로 감쌌을 때의 보강효과와 거동 특성에 대한 연구로, CFRP 쉬트로 보강한 경우 쉬트의 구속효과에 의하여 압축내력이 향상되었으나 사각형 단면이므로 원형단면보다 구속효과는 작게 나타났다. 보강효과와 거동특성을 확인하기 위하여 CFRP 쉬트의 보강겹수, 시험체의 크기, 형상비, 모따기, 및 단면 개량을 변수로 선정하여 실험을 계획하였다. 11개의 실험변수별로 각각 5개씩, 총 55개의 실험체를 제작하여 실험하였다. 압축시험결과 CFRP 쉬트의 구속에 의해 보강효과가 나타났으나 실험체의 크기가 증가함에 따라 구속효과는 떨어졌다. 반면에 CFRP 쉬트의 구속효과에 의하여 사각형 콘크리트 기둥의 연성은 매우 크게 증가되었다. 단면형상을 사각형에서 원형으로 변형한 경우 압축강도와 연성 모두 증가되었다. 또한 실험결과와 기존연구결과를 사용하여 CFRP로 구속된 사각형 콘크리트 부재에 대한 기존 강도추정식의 정확성과 신뢰성을 검증하였다.

Dynamic characteristics of CFRP-Strengthened wooden beams: Experimental and numerical study

  • Nur Sunar;Habib Uysal
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.323-334
    • /
    • 2024
  • Physical and chemical factors can cause traditional timber constructions to lose structural integrity. Knowing the dynamic properties of the building components is vital to avoid damage to the buildings from dynamic effects, a subset of physical effects. In this work, spruce and scotch pine wooden beams that had been strengthened in three distinct ways with carbon fiber strengthened polymer (CFRP) were investigated for changes in their dynamic properties. For this, CFRP was used to strengthening unstrengthened wooden beams in the form of bottom confinement, U-shaped confinement, and full confinement after the dynamic parameters of the beams were determined. By using experimental modal analysis with both free-free and fixed-fixed boundary conditions, the beams'initial natural frequencies were identified.