• Title/Summary/Keyword: CFIE

Search Result 10, Processing Time 0.022 seconds

Analysis of Electromagnetic Scattering from Arbitrarily Shaped Three-Dimensional Dielectric Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 유전체의 전자파 산란 해석)

  • 정백호;한상호;이화용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.27-37
    • /
    • 2002
  • In this paper, we present various combined field integral equation (CFIE) formulations for the analysis of electromagnetic scattering from arbitrarily shaped three dimensional homogeneous dielectric body in the frequency domain. For the CFIE case, we propose eight separate formulations with different combinations of testing functions that result in sixteen different formulations of CFIE by neglecting one of testing terms. One of the objectives of this paper is to illustrate that not all CFIE are valid methodologies in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results involving far scattered fields and radar cross section (RCS) are presented for a dielectric sphere to illustrate which formulation works and which do not.

Stable Analysis of Electromagnetic Scattering from Arbitrarily Shaped Conductors Coated with a Dielectric Material (유전체로 코팅된 임의 형태 도체의 안정된 전자파 산란 해석)

  • 한상호;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with dielectric materials. The integral equation treated here is the combined field integral equation(CFIE). The objectives of this paper is to illustrate that only the CFIE formulation is a valid methodology in removing the interior resonance problem, which occurs at a frequency corresponding to an internal resonance of the structure. Numerical results of radar cross section for coated conducting structures are presented and compared with other available solutions.

A Stable MOT Scheme with Combined Field Integral Equation for the Analysis of Transient Scattering from Conducting Structure (도체 구조물의 과도 산란 해석을 위한 결합 적분방정식의 안정된 MOT 기법)

  • Lee, Chang-Hwa;An, Ok-Kyu;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, a stable marching-on in time(MOT) method with a time domain combined field integral equation(CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time domain electric field integral equation(EFIE) with the magnetic field integral equation(MFIE). The time derivatives in the EFIE and MFIE are approximated using a central finite difference scheme and other terms are averaged over time. This time domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. Numerical results with the proposed MOT scheme are presented and compared with those obtained from the conventional method and the inverse discrete Fourier transform(IDFT) of the frequency domain CFIE solution.

Time Domain Combined Field Integral Equation for Transient Electromagnetic Scattering from Dielectric Body (유전체의 전자기 과도산란 해석을 위한 시간영역 결합 적분방정식)

  • Kim Chung-Soo;An Hyun-Su;Park Jae-Kwon;Jung Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.626-633
    • /
    • 2004
  • In this paper, we present a time domain combined field integral equation (TD-CFIE) formulation to analyze the transient electromagnetic response from three-dimensional dielectric objects. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. A set of the RWG (Rao, Wilton, Glisson) functions Is used for spatial expansion of the equivalent electric and magnetic current densities and a combination of RWG and its orthogonal component is used as spatial testing. We also investigate spatial testing procedures for the TD-CFIE to select the proper testing functions that are derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable enables one to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are presented and compared with the solutions of the frequency domain combined field integral equation (FD-CFIE).

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Unconditionally Stable Analysis of Transient Scattering from Conductors Using Time-Domain Combined Field Integral Equations (시간영역 결합적분식을 이용한 도체 과도산란의 무조건 안정된 해석)

  • 정백호;서정훈;이원우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.340-348
    • /
    • 2003
  • In this paper, we propose a novel formulation to solve a time-domain combined field integral equation (CFIE) for analyzing the transient electromagnetic scattering response from closed conducting bodies. Instead of the conventional marching-on in time (MOT) technique, tile solution method in this paper is based on the moment method that involves separate spatial and temporal testing procedures. Triangular patch vector functions are used for spatial expansion and testing functions for three-dimensional arbitrarily shaped closed structures. The time-domain unknown coefficient is approximated as a basis function set that is derived from tile Laguerre functions with exponentially decaying functions. These basis functions are also used as the temporal testing. Numerical results computed by the proposed method arc stable without late-time oscillations and agree well with the frequency-domain CFIE solutions.

Computation of Radar Cross Section from Arbitrarily Shaped Composite Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 임의 형태 복합구조의 레이더 단면적 산출)

  • 한상호;정백호;윤희상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we present a new combined field integral equation (CFIE) formulation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional perfectly conducting and piecewise homogeneous dielectric composite body. The conducting/dielectric structures are approximated by planar triangular patches, which have the ability to conform to any geometrical surface. The surface covering the conducting body is replaced by an equivalent surface electric current and the surface of the dielectric by equivalent electric and magnetic currents. The all equivalent currents are approximated in terms of RWG (Rao, Wilton, Glisson) functions. The objective of this paper is to illustrate that the CFIE is a valid methodology in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results are presented and compared with solutions obtained using other formulations.

Analysis of the Scattering Property of Dielectric Scatterer with Impedance Boundary Condition (임피던스 경계면 조건을 적용한 유전체의 산란 특성 분석)

  • Hwang, Ji-Hwan;Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1087-1094
    • /
    • 2014
  • An numerical technique of impedance boundary condition to improve an efficiency in the process of moment method with CFIE(Combined Field Integral Equation), which is widely used to analyze the scattering property of dielectric scatterers, and results of its cross-validations are presented in this study. Application of the impedance boundary allows to represent the equivalent surface currents of dielectric scatterer depicted by both kinds of electric/magnetic surface currents(Js, Ms) to the single surface current by Js or Ms only. Accuracy of this technique is validated by the existing CFIE and theoretical values such as Mie-series solution and small perturbation scattering model. The computational difference of less than 1 dB was verified within an imaginary part of dielectric constant more than 12, as well.

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

Plane Wave Scattering Induced Resonant Modes of Spherical Resonator (구형태 공진기에서의 평면파 산란 공진모드)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1260-1263
    • /
    • 2013
  • Plane wave scattering from a spherical resonator is calculated by solving the combined field integral equation (CFIE) with Rao-Wilton-Glisson (RWG) basis functions and the moment method. The calculations show that magnetic and electric dipoles are found at resonant modes. These characteristics are confirmed by radiation patterns in the far field region. In addition, an analysis of a magnetodielectric sphere is discussed.