• Title/Summary/Keyword: CFDS method

Search Result 9, Processing Time 0.018 seconds

Efficiency Enhancement of CFDS Code (CFDS 코드의 효율성 개선)

  • Kim J. G.;Lee J.;Kim C.;Hong S. K.;Lee K. S.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.123-127
    • /
    • 2005
  • The numerical analyses of the complicated flows are widely attempted in these days. Because of the enormous demanding memory and calculation time, parallel processing is used for these problems. In order to obtain calculation efficiency, it is important to choose proper domain decomposition technique and numerical algorithm. In this research we enhanced the efficiency of the CFDS code developed by ADD, using parallel computation and newly developed numerical algorithms. For the huge amount of data transfer between blocks non-blocking method is used, and newly developed data transfer algorithm is used for non-aligned block interface. Recently developed RoeM scheme is adpoted as a spatial difference method, and AF-ADI and LU-SGS methods are used as a time integration method to enhance the convergence of the code. Analyses of the flows around the ONERA M6 wing and the high angle of attack missile configuration are performed to show the efficiency improvement.

  • PDF

Characteristic Flux-Difference Improvement for Inviscid and Viscous Hypersonic Blunt Body Flows

  • Lee Gwang-Seop;Hong Seung-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.48-58
    • /
    • 1999
  • The Characteristic Flux Difference Splitting (CFDS) scheme designed to adapt the characteristic boundary conditions at the wall and inflow/outflow boundary planes satisfies Roe's property U, although the CFDS Jacobian matrix is decomposed by a product of elaborate transformation matrices and explicit eigenvalue matrix. When the CFDS algorithm, thus a variant of Roe's scheme, is applied straightforwardly to hypersonic flows over a blunt body, the strong bow shock gradually breaks down near the stagnation point. This numerical instability is widely observed by many researchers employing flux-difference method, known in the literature as the carbuncle phenomenon. Many remedies have been proposed and resulted in partial cures. When the idea of Sanders et al. which identifies the minimum eigenvalues near the discontinuity present is applied to CFDS method, it is shown that the instability problem can be controlled successfully. A few flux splitting methods have also been tested and results are compared against the Nakamori's Mach 8 blunt body flow.

  • PDF

Applications of Characteristic Boundary Conditions within CFDS Numerical Framework (CFDS기법에 연계된 특성경계조건에 응용성에 대한 소개)

  • Hong S. K.;Lee K. S.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2000
  • Characteristic boundary conditions are discussed in conjunction with a flux-difference splitting formulation as modified from Roe's linearization. Details of how one can implement the characteristic boundary conditions which are made compatible with the interior point formulation are described for different types of boundaries including subsonic outflow and adiabatic wall. The validity of boundary conditions are demonstrated through computation of transonic airfoil, supersonic ogive-cylinder, hypersonic cylinder, and S-duct internal flows. The computed wall pressure distributions are compared with published experimental and computed data. Objectives of this paper are thus to give insight of formulation procedure of a flux-difference splitting method and to pave ways for other users to adopt present boundary procedure on their numerical methods.

  • PDF

Second order VOF convection model in curvilinear coordinates

  • Kim, Seong-O.;Hwang, Young-dong;Kim, Young-In.;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.392-399
    • /
    • 1997
  • An approximation technique was developed for the simulation of free surface flows in non-orthogonal coordinates. The main idea of this approach is to approximate VOF by the second order linear equation in the transformed domain on the assumption that the continuity of free surface would be maintained. The method was justified through a set of numerical test to examine if its original shape could be maintained when the circles are convected in uniform velocity in horizontal direction in curvilinear coordinates. Finally a simple problem was solved by applying the method to CFX4.1 general purpose CFDS code.

  • PDF

Characteristics of Supersonic Jet Impingement on a Flat Plate (평판에 충돌하는 초음속 제트에 유동특성)

  • Hong Seung-kyu;Lee Kwang-Seop;Park Seung-O
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

Parallelization of Multi-Block Flow Solver with Multi-Block/Multi-Partitioning Method (다중블록/다중영역분할 기법을 이용한 유동해석 코드 병렬화)

  • Ju, Wan-Don;Lee, Bo-Sung;Lee, Dong-Ho;Hong, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.9-14
    • /
    • 2003
  • In this work, a multi-block/multi-partitioning method is suggested for a multi-block parallelization. It has an advantage of uniform load balance via subdividing of each block on each processor. To make a comparison of parallel efficiency according to domain decomposition method, a multi-block/single-partitioning and a multi-block/ multi-partitioning methods are applied to the flow analysis solver. The multi-block/ multi-partitioning method has more satisfactory parallel efficiency because of optimized load balancing. Finally, it has applied to the CFDS code. As a result, the computing speed with sixteen processors is over twelve times faster than that of sequential solver.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Cross Draft Directions and Velocities Using Smoke Visualization Technique (기류 가시화기법을 이용한 방해기류 방향과 속도에 따른 푸쉬풀 후드 효율 평가)

  • Song, Se-Wook;Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank in recent years. Efficiency of push pull hood system is affected by various parameters, such as cross draft, vessel shapes, size of tanks surface, liquid temperature, and so on. Among these, velocity of cross draft might be one of the most influencing factor for determining the ventilation efficiency. To take account of the effect of cross draft velocities over 0.38m/s, a flow adjustment of ${\pm}$20% should be considered into the push and +20% into the pull flow system Although there are many studies about the efficiency evaluation of push pull hood system based on CFDs(Computational Fluid Dynamics) and experiments, there have been no reports regarding the influence of velocities and direction of cross-draft on push-pull hood efficiency. This study was conducted to investigate the influence of cross draft direction and velocities on the capture efficiency of the push-pull ventilation system. Smoke visualization method was used along with mock-up of push-pull hood systems to verify the ventilation efficiency by experiments. When the cross-draft blew from the same origins of the push flows, the efficiency of the system was in it's high value, but it was decreased significantly when the cross-draft came from the opposite side of push flows Moreover, the efficiency of the system dramatically decreased when the cross-draft of open surface tank was faster than 0.4m/s.

Visualization of Flow in a Transonic Centrifugal Compressor

  • Hayami Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • How is the flow in a rotating impeller. About 35 years have passed since one experimentalist rotating with the impeller. of a huge centrifugal blower made the flow measurements using a hot-wire anemometer (Fowler 1968). Optical measurement methods have great advantages over the intrusive methods especially for the flow measurement in a rotating impeller. One is the optical flow visualization (FV) technique (Senoo, et al., 1968) and the other is the application of laser velocimetry (LV) (Hah and Krain, 1990). Particle image velocimetries (PIVs) combine major features of both FV and LV, and are very attractive due to the feasibility of simultaneous and multi-points measurements (Hayami and Aramaki, 1999). A high-pressure-ratio transonic centrifugal compressor with a low-solidity cascade diffuser was tested in a closed loop with HFC134a gas at 18,000rpm (Hayami, 2000). Two kinds of measurement techniques by image processing were applied to visualize a flow in the compressor. One is a velocity field measurement at the inducer of the impeller using a PIV and the other is a pressure field measurement on the side wall of the cascade diffuser using a pressure sensitive paint (PSP) measurement technique. The PIV was successfully applied for visualization of an unsteady behavior of a shock wave based on the instantaneous velocity field measurement (Hayami, et al., 2002b) as well as a phase-averaged velocity vector field with a shock wave over one blade pitch (Hayami, et al., 2002a. b). A violent change in pressure was successfully visualized using a PSP measurement during a surge condition even though there are still some problems to be overcome (Hayami, et al., 2002c). Both PIV and PSP results are discussed in comparison with those of laser-2-focus (L2F) velocimetry and those of semiconductor pressure sensors. Experimental fluid dynamics (EFDs) are still growing up more and more both in hardware and in software. On the other hand, computational fluid dynamics (CFDs) are very attractive to understand the details of flow. A secondary flow on the side wall of the cascade diffuser was visualized based either steady or unsteady CFD calculations (Bonaiuti, et al.,2002). EFD and CFD methods will be combined to a hybrid method being complementary to each other. Measurement techniques by image processing as well as CFD calculations give a huge amount of data. Then, data mining technique will become more important to understand the flow mechanism both for EFD and CFD.

  • PDF