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ABSTRACT

An approximation technique was developed for the simulation of free surface
flows in non-orthogonal coordinates. The main idea of this approach is to
approximate VOF by the second order linear equation in the transformed domain
on the assumption that the continuity of free surface would be maintained.
The method was justified through a set of numerical test to examine if its
original shape could be maintained when the circles are convected in uniform
velocity in horizontal direction in curvilinear coordinates. Finally a simple
problem was solved by applying the method to CFX4.1 general purpose CFDS
code.

1. Introduction

There are varieties of physical hydrodynamic phenomena which involve interfaces between
phases in nuclear power plant. However, numerical description of phase interfaces is
notoriously complicated since the locations of these interfaces are not known in advance and
must be determined as part of the solutions of the transport equations.

Reviewing the techniques for dealing with free a surface problem, two kinds of approaches
are used. The first one is Lagrangian approach which usually traces particles in Lagrangian
method by use of local Eulerian velocities. The approach is applied by boundary integral
technique' >, finite-element methods’® and boundary-fitted coordinates method’ ® where every
node points on the free surface are moved along the motion of free surface. Therefore the
method is hard to apply to the complex situations such as surface folding and surface
merging because when two sides of free surface are merged, the merged parts of node point
are rearranged to maintain mass continuity.

On the other hand, a numerical technique called the volume tracking metho has the
potential for handling large surface deformations and surface folding and merging. This

method uses a volumetric progress variable

7 “_fx‘l*:" VOF(=Volume of Fraction) but the method
i P AT . developed until now tends to smooth the
- \L%___. shapes of interface.'”
o ——~ In addition, most of VOF methods are
Non-orthogonal | Onogonal |~ applied to orthogonal coordinates. However,
coordinate . coordinate [+ .
ystem system —  when the methods are applied to a shape of
——— irregular geometry with thin free surface
‘—_N movements, two kinds of problem are

Fi 1. Tvpical . " h £ expected. The one is to apply boundary
igure 1. Typical examples of mesh for ot .

free surface calculation in orthogonal and condition on the sx.lrface of irregular
non-orthogonal coordinate system geometry and the other is to control the flow
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to be contacted on the edged shape of
irregular geometry as an example as shown
in Figure 1. Therefore, to solve the problem
discussed above, a second-order
approximation technique will be developed in
this study which can be applied to
nonorthonal coordinates.

II. Second order model in non-orthogona
coordinates

The main idea of this approach comes from
the assumption that if the shapes of free
surface are continuous in the original domain,
the continuity of the shape would be
maintained on the transformed domain.

CASE-13 CASE CASE=1S CASE-IE Moreover the free surface would be
Figure 2 Possible distribution of represented with a second order linear
volume fraction in a cell block equation to prevent from losing curvatures.

The  procedures of  constructing the
second-order model for the interfaces and calculating the convective flux are as follows:
Step-1: Define the cell block with 9 cells including the surface cell and its neighboring ones
by inspecting the direction of a face velocity,.

Step-2: Calculate slopes of volume fraction, mg,mi,ms and mt, at every cell faces.

Step-3: Define a second-order linear equation and identify the base cases of the second-order
model.

Step-4: Identify the direction of convection and calculate the convective flux.

11.1 Rearrangement of surface cell block

The accuracy of distribution function is very
much sensitive to the slope of the face. Also
the shape function accuracy impacts convective
flux calculation. To enhance the accuracy of
the slope calculation, a cell block including the
surface cell and environment 8 cells is used.
If the face slope is determined only by two
adjacent cells, there exist a possibility of
losing accuracies when adjacent cells are
empty.

When an arbitrary surface cell block is
selected from the typical interface, there are
varieties of free surface shapes around the
surface cell as shown in Figure 2. To reduce
|<—dx(i-1)——->‘<—dx(i>—+—dx(m}—,| the number of cases, the neighboring cell must
be rearranged by rotation, trnasition of
environmental cells such that the sum of

F(i—1.j+1) F(i.j+1) Fli+1,j+1)

dy(ji I)_,I

‘,__dy(j 1)_,}‘__dy(J)

Figure. 3 Typical cell block for
case-1
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volume fractions of the bottom row has maximum value and that of the left column has
larger value than the right one. By use of this procedure, all the cases are reduced to case-1..

I1.2 Slope calculation

After rearranging the surface cell and neighboring cells in the cell block, left face slope is
calculated by left two cell columns and right ones are calculated by the right 2 ones. For
calculation of the slope at the face of a surface cell, it is assumed that the interface of free
surface can be represented either as a single-valued function, f(x) or f(y), for the x)y
directions of the model coordinates. Boundary slope ‘m’ is calculated from the equations
(2)-(5) by categorizing the cases based on the value of Fi,Fr,xLXr as shown in Figure 3.

3 @k .
f,~=—L—-H———, where H=~$—1dy" W= dx; (1)
case-1: m=—x2{[ —(2xpFp+ 2 Fp) +2V 2pF (xpFr + 2,.F D)}, (2)
if F2gih and x(-F)+ (FAI-Forzd 2%,
o _ 2(Fg—Fp
case-2: m= ) 3)
. F -
if FRz———Z;:Jr’;L, and Fe= [F’-("”"‘zx:z ("R+x‘)],
_a: - 1
case-d  m=— TV Forw] 42 (0= FrtVF = Form: 1’ @
if xL(l—FL)+»/(FR(l—FL)xLxR)s% and xpFr+ FR(l—FL)xms%,
Case-4: m='?2R2_[2xL(1—'FL)+xR(1—FR)+2V’:L(1_FL)((xL(l—FL)+xR(1_FR)) 1, 6]
lf FRS [FL(xR+zx;‘z—(xR+xL)] and xRFR+ FR(I-FL)xRx,_Z%.
case—1 case—2 case—3 case—4

Figure 4 Base case for slope calculation

I1.3 Model case identification of surface cell

A second-order linear equation is defined as equation (6) to represent the volume fraction
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distribution in a surface cell. The constants a, b are obtained by differentiating the equation
and equating it with the slopes at the left and right faces of a surface cell by the equations
(7):

y=a+bE+c 6

a=—m%7ﬂ and b=m,, (7

where m,=dy/dx;- mg, m,=dy/dx; m; and mp m; are slope calculated in &, 7 coordinates.
When fitting the interfaces of a surface cell
by the second-order curve, 8 possible shapes
arise as shown Figure 5. However, cases—f,
g, h can be excluded by restricting the
maximum difference of volume fraction
distribution to be less than the cell height.
In addition, cases-f, g, h rarely appear if
mesh size is small enough and also in these
cases, higher than 4th order algebraic

Figure 5. Possible shapes of the interface !
in a cell when approximating the free equations need to be solved to get the

surface by the second-order model constant 'c’ of equation (6)

From the above procedure, the second-order
model is categorized into 5-cases(cases-a, b, ¢, d, e). To calculate the constant ‘¢’ and
convective flux, each case is examined by the criteria as described in equations(8)-(13).

3
Case-a if Fz—(mm*’—m)3 and Fs——gmg}-—m’), (8)
[ r
3__..,3
Case-b if Fz—w and FSI—(L—"%, (9)
6 (m,—m,)
Case-c if F21+(m—"gz'—"—’)— for m;-m,20 10)
. m,~2m; | m,—m\? .
if Fzl+—F— o for m,- m<0, ay
3
- ; L B
case~d if F< Som—) (12)
B . (m?— m?) m,—2m,{ m,—m;\°
case—e if FZI—W and F<l+ 3 (m,+m,) 13)

I1.4 Calculation of convective flux

For calculation of convective flux, the direction of convection in the calculation model must
be identified since the cell-block is rearranged to reduce the number of cases. To calculate
the convective flux, the constant ‘¢’ of equation(7) must be determined. For cases-b, d the
constant ‘c’ determined explicitly from the equation (14),

for case-b, c=F—ﬁn’6—+@i,
- b _a( BF\P
for case-d, c= 12 4( " ) . (14)
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Figure 6. Calculation of convective flux of

second order method

o=0, if x,2x,,

ofe= [ faxif x,<x, where x,=1-

For cases-a, ¢, e the constant 'c’ must be
evaluated from the third order algebraic
equation which comes from integrating the
second-order linear equation within the surface
cell. After establishing the third-order
algebraic equation, an appropriate solution is
obtained by the Cardano’s solution procedure.
For case ¢ and e, the constant ‘¢’ can be
obtained by a similar procedure to case-a.

The convective flux in the second-order
model is calculated via integration of the
second-order equation from the cell face to the
distance defined by the local velocity of the
cell face over time. For example, for case-a,
the flux of volume fraction in the positive x
direction is

(15)

w- dt
“w - 16)

The flux of the other direction could be calculated in a similar way.

HI. Results and Discussion

For testing of convection capability, various sizes of circle are convected from left to the
right. The calculation domain was devided in three parts. Left and right hand parts are

=00
t=0.3
=06
t=09

t=1,2

Figure 7. Water column break
down simulation by use of CFX
4.1 code with second order free
surface convection model

meshed to have equal length in orthogonal
coordinates but center part are meshed by a
non-orthogonal coordinate method to check
the degree of distortion of a circle during
convection process. The non-orthogonal
meshes are generated by two methods. At
first &-direction is generated to be parallel to
the x-axis and #-direction mesh is generated

by a sine curve(Type-I). At second the &
-direction one is generated by sine curve and
the #z-direction one is generated to be parallel
to the y~axis(Type-1I).

Based on this meshing scheme, each circle is
convected from left part to the right part
through the non-orthogonal meshes by the
400 time step. The velocities were assigned to
have a uniform value (u'=0.1, v'=0.0 times of
the mesh length of the uniform grid in
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convection direction). From the X,y component velocity, contravariant velocities are calculated
by the equation (17).

wy,—vix,  , —u'yst vl
Similar calculations were conducted by using a first order model developed as FLAIR
method™ After 400 time step convection, all circles are reconstructed as shown Figure 89. To
assess the degree of distortion of convected circle, maximum cell error and root of square
sum of every cell error v.s. cell diameter are plotted as shown Figure 10-13. The maximum
cell error is defined by maximum value of every cell errors normalized by circle area as an
indicator of local distortion. The root of square sum error is defined by root of square sum of
every cell errors normalized by circle area as an indicator of global distortion of the circles.
From the calculation results, the first and the second order model works well for the
non-orthogonal coordinates. However, the first order model has tendencies of being flattened
even though the number of cells are increased for circle diameter. The second order model
has small distortion for the small diameter(4 cell for diameter) but if the number of cells are
increased a little bit, the circle reconstructed by the second order model is completely
identical to the exact solution. This result seems to come from the fact that if a circle
diameter increase to an extent, second-order model fits the circle completely but the first
order model does not fit the curvature of circles exactly even if the number cells are
increased. Finally as an example problem, broken dam problem with curvatures base mat was
solved for demonstration of second order model to CFX4.1 code as shown Figure 7.
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Figure 8. Various sizes of circular
geometry after 400 time step
convection from left to right hand
direction by first order convection
method. The radius of circle are
2,4,6,8 times of regular mesh.

Figure 9. Various sizes of circular
geometry after 400 time step
convection from left to right hand
direction by second order convection
method. The radius of circle are
2,4,6,8 times of regular mesh.
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Figure 12. Root of square sum error Figure 13. Root of square sum error
for the first order and the second for the first model and the second
order model for the type-1 geometry order model for the type-2 geometry

1V. Conclusion

An approximation technique was developed for the simulation of free surface flows in
non-orthogonal coordinates. The main idea of this approach is to approximate VOF by the
second order linear equation on the assumption that the continuity of free surface would be
maintained in the transformed domain. To justify the method, A set of numerical test was
conducted to examine if its original shape could be maintained. From the test results, it is
known that a free surface convection model developed for orthogonal coordinates can be easily
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applied to non-orthogonal coordinates through the procedure developed in this study. Moreover
the second order method developed in this study shows excellent convection capability of free
surface convection. Therefore, for the problem with large curvature of free surface, the second

order free surface convection is recommended.
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