• Title/Summary/Keyword: CFD 모델

Search Result 728, Processing Time 0.031 seconds

Vibration Stability Analysis of Furnace System in Supercritical Boiler (초임계압 보일러 연소로의 진동안정성 평가기법 연구)

  • Kwon, Hyuk-Min;Cho, Chi-Hoon;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.13-15
    • /
    • 2014
  • 최근 경제적인 연비와 효율적인 가동성, 배기가스 감소의 이유로 초임계압 보일러가 각광받고 있다. 하지만 보일러 연소로는 용접된 튜브로 구성되어 있기 때문에 연소 시 내부압력에 의해 발생되는 진동에 취약하여 이에 대한 진동안정성 평가가 필요하다. 본 논문에서는 CFD 기법을 기반으로 수행한 변동압력 해석과 단순화한 모델을 이용한 진동해석을 통하여 보일러 운전 시의 진동안정성 평가를 수행하였다. 변동압력해석은 정상상태 CFD 해석을 수행하고, 이를 이용한 음향모드 해석과 비정상상태 CFD 해석에서 변동압력을 추출하고, 음향모드 해석결과와 주파수 성분을 비교하여 검증하였으며 이를 진동해석 모델에 기진력으로 적용하여 보일러 연소로의 진동해석을 수행하였다. 진동해석 모델은 동특성을 고려한 등가물성치를 이용하여 연소로의 복잡한 구조를 단순화하였으며 buckstay 등의 방진구조를 구현하여 보일러의 진동안정성을 평가하는 기법을 정립하였다. 해석결과, 보일러 운전조건에서 비정상상태 CFD 해석을 통해 구한 변동압력과 진동해석을 통해 얻은 가속도 응답은 안정적 수준인 것으로 확인하였다. 이는 향후 유사한 보일러 안정성 평가에 적용이 가능하고, buckstay 등 보일러의 방진 구조 설계 및 평가에도 적용할 수 있음을 확인할 수 있었다.

  • PDF

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).

Numerical study on the thermal-hydraulic safety of the fuel assembly in the Mast assembly (수치해석을 이용한 마스트집합체 내 핵연료 집합체의 열수력적 안전성 연구)

  • Kim, YoungSoo;Yun, ByongJo;Kim, HuiYung;Jeon, JaeYeong
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • In this study, we conducted study on the confirmation of thermal-hydraulic safety for Mast assembly with Computational Fluid Dynamics(CFD) analysis. Before performing the natural convection analysis for the Mast assembly by using CFD code, we validated the CFD code against two benchmark natural convection data for the evaluation of turbulence models and confirmation of its applicability to the natural convection flow. From the first benchmark test which was performed by Betts et al. in the simple rectangular channel, we selected standard k-omega turbulence model for natural convection. And then, calculation performance of CFD code was also investigated in the sub-channel of rod bundle by comparing with PNL(Pacific Northwest Laboratory) experimental data and prediction results by MATRA and Fluent 12.0 which were performed by Kwon et al.. Finally, we performed main natural convection analysis for fuel assembly inside the Mast assembly by using validated turbulence model. From the calculation, we observed stable natural circulation flow between the mast assembly and pool side and evaluated the thermal-hydraulic safety by calculating the departure from nucleate boiling ratio.

The research on CFD turbulance models for comparison according to my secondary air injection into the combustion (연소로 내 2차 공기 분사에 따른 CFD 난류 모델 비교에 관한 연구)

  • Choi, Junhyuk;Choi, Chong-gun;Hwang, Seung-Sik;Shin, Donghoon;Chung, Tae-Yong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.345-347
    • /
    • 2012
  • The secondary air injection influences the flow of the combustion gas in the furnace. Therefore, the analysis of the furnace should be careful in the selection of the turbulent model with CFD. In this study, CFD results of several turbulent models were compared with experimental results. Analysis results suggest to select turbulent models in the furnace secondary air nozzle.

  • PDF

A Study on the Accuracy of CFD Prediction for Small Scaled 4 Nozzle Clustered Engine Using Air (공기를 이용한 축소형 4노즐 클러스터드 엔진 저부 유동의 CFD 해석 검증)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.78-84
    • /
    • 2011
  • CFD simulation has been conducted on a small scaled 4 nozzle clustered engine operating with air. In the present paper, the effects of grid size, turbulence models, flux difference methods have been compared. The results show that the base flows are somewhat different as the turbulence models, while Roe and AUSM flux differences produced almost the same results. Spalart-Allmaras turbulence model produces more accurate results rather than famous SST k-w model. The calculated Mach number and pressure profile in the engine base reveal the complex base flow structure, which is somewhat different from the generally estimated flow fields.

  • PDF

Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique (미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석)

  • Lee, Chi-Hoon;Kim, Sang-Gon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2011
  • An unsteady RANS analysis study of the 3-D flow around the NREL Phase VI horizontal axis wind turbine(HAWT) was performed using sliding mesh approach. Two different analysis models such as rotor-only and rotor with tower/nacelle were constructed to investigate the blade/tower interaction. Analysis results for the rotor with tower/nacelle were compared with the corresponding NREL's experimental data which produced fairly good validation of the present CFD model. Comparison of flows around those two models also clearly showed the blade/tower interaction even it was small for upwind configuration. Other visualization results and integrated aerodynamic loads including torque of the blade demonstrated the effective unsteady flow simulation capability of the present CFD model.

Development of CFD Model for Estimation of Cooling Effect of Fog Cooling System in Greenhouse (온실 포그냉방시스템의 냉방효과 예측을 위한 CFD 모델의 개발)

  • 유인호;김문기;권혁진;김기성
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2002
  • This study was carried out not only to develop CFD model for numerically simulating fog cooling system but also to verify the validity of the developed model by data measured in fag cooling greenhouse. In addition the developed model was applied to investigate the effects of spraying water temperature, spraying water amount, spraying interval and evaporation percentage on the performance of the fog cooling system. According to the simulation results, the temperature differences between the measured and predicted temperatures at each measurement point were $0.1~1.4^{\circ}C$ in case of no shading and $0.2~2.3^{\circ}C$ in close of shading. The humidity differences were 0.3~6.0% and 0.7~10.6%, respectively in the cases of no shading and shading. Because the predicted data showed a good agreement with the measured ones, the developed model is supposed to be able to predict the cooling effect of the fog cooling system. The performance of fog cooling system was greatly influenced by spraying water amount, spraying interval and evaporation percentage, but it was not influenced by spraying water temperature.

GP-GPU based Parallelization for Urban Terrain Atmospheric Model CFD_NIMR (도시기상모델 CFD_NIMR의 GP-GPU 실행을 위한 병렬 프로그램의 구현)

  • Kim, Youngtae;Park, Hyeja;Choi, Young-Jeen
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this paper, we implemented a CUDA Fortran parallel program to run the CFD_NIMR model on GP-GPU's, which simulates air diffusion on urban terrains. A GP-GPU is graphic processing unit in the form of a PCI card, and a general calculation accelerator to perform a large amount of high speed calculations with low cost and electric power. The GP-GPU gives performance enhancement of speed by 15 times to compare the Nvidia Tesla C1060 GPU with Intel XEON 2.0 GHz CPU. In addition, the program on a GP-GPU shows efficient performance compared to an MPI parallel program on multiple CPU's. It is expected that a proposed programming method on the GP-GPU parallel program can be used for numerical models with a similar structure.

Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems (데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.883-888
    • /
    • 2023
  • Since data centers are places that provide IT services 24 hours a day, 365 days a year, data center power consumption is expected to increase to approximately 10% by 2030, and the introduction of high-density IT equipment will gradually increase. In order to ensure the stable operation of IT equipment, various types of research are required to conserve energy in cooling and improve energy management. This study proposes the following process for energy saving in data centers. We conducted CFD modeling of the data center, proposed an artificial intelligence-based thermal environment prediction model, compared actual measured data, the predicted model, and the CFD results, and finally evaluated the data center's thermal management performance. It can be seen that the predicted values of RCI, RTI, and PUE are also similar according to the normalization used in the normalization method. Therefore, it is judged that the algorithm proposed in this study can be applied and provided as a thermal environment prediction model applied to data centers.

Analysis of Temperature Gradients in Greenhouse Equipped with Fan and Pad System by CFD Method (CFD 기법을 이용한 팬 앤 패드 냉방 온실의 온도경사 분석)

  • Nam Sang Woon;Giacomelli Gene A.;Kim Kee Sung;Sabeh Nadia
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2005
  • Evaporative cooling pad system is one of the main cooling methods in greenhouses and its efficiency is very high. However, it has some disadvantages such as greenhouse temperature distributions are not uniform and installation cost is expensive. In this study, a CFD simulation model f3r predicting the air temperature distribution in the fan and fad cooling greenhouse was developed. The model was calibrated and validated against experimental data and a good fit was obtained. The influence of different outside wind, fan and pad height, ventilation rate, shading, and greenhouse length, were then examined. In order to reduce the internal temperature gradients, it is desired that the prevail wind direction and the fan and pad heights are considered. The simulation indicates that high ventilation rates and shading contribute to reduce the temperature gradients in the fan and pad cooling greenhouse. In order to maintain the desired greenhouse temperature, the pad-to-fan distance should be restricted according to the design climate conditions, shading and ventilation rates. The developed CFD model can be a useful tool to evaluate and design the fan and pad systems in the greenhouses with various configurations.