Development of CFD Model for Estimation of Cooling Effect of Fog Cooling System in Greenhouse

온실 포그냉방시스템의 냉방효과 예측을 위한 CFD 모델의 개발

  • Published : 2002.06.01

Abstract

This study was carried out not only to develop CFD model for numerically simulating fog cooling system but also to verify the validity of the developed model by data measured in fag cooling greenhouse. In addition the developed model was applied to investigate the effects of spraying water temperature, spraying water amount, spraying interval and evaporation percentage on the performance of the fog cooling system. According to the simulation results, the temperature differences between the measured and predicted temperatures at each measurement point were $0.1~1.4^{\circ}C$ in case of no shading and $0.2~2.3^{\circ}C$ in close of shading. The humidity differences were 0.3~6.0% and 0.7~10.6%, respectively in the cases of no shading and shading. Because the predicted data showed a good agreement with the measured ones, the developed model is supposed to be able to predict the cooling effect of the fog cooling system. The performance of fog cooling system was greatly influenced by spraying water amount, spraying interval and evaporation percentage, but it was not influenced by spraying water temperature.

본 연구에서는 포그냉방시스템을 수치적으로 시뮬레이션하기 위한 CFD 모델을 개발하였으며, 포그냉방온실에서 측정된 데이터에 의해 개발된 모델의 유효성을 검증하였다. 또한 분무수온, 분무수량, 분무정지시간과 분무입자의 증발률이 포그냉방시스템의 성능에 미치는 영향을 알아보기 위해 개발된 모델을 적용하였다. 시뮬레이션 결과에 의하면, 각 측점에서 실측치와 예측치의 온도차가 무차광조건에서는 $0.1~1.4^{\circ}C$, 차광조건에서는 $0.2~2.3^{\circ}C$였으며, 상대습도차는 무차광조건에서는 0.3~6.0%, 차광조건에서는 0.7~10.6%였다. 예측치가 실측치와 비교적 잘 일치하는 것으로 나타나 개발된 모델이 포그냉방시스템의 냉방효과를 예측할수 있는 것으로 판단된다. 포그냉방시스템 성능은 분무수량, 분무정지시간과 분무입자의 증발률의 영향을 많이 받지만 분무수온의 영향은 받지 않는 것으로 나타났다.

Keywords

References

  1. Al-ahfi, A. 1999. The influence of shading and evapo-transpiration on a ventilated greenhouse environment. Ph.D. Diss., Ohio State Univ., p. 48-55
  2. Al-helal, I.M. 1998. A computational fluid dynamics study of natural ventilation in arid region greenhouses. Ph.D. Diss., Ohio State Univ., p. 27-35
  3. Aldrich, Robert A. and John W. Bartok. 1990. Green house Engineering. Northeast regional agricultural engi-neering service. p. 65-66
  4. Arbel, A., 0. Yekutieli and M. Barak. 1999. Perfor-mance of a fog system for cooling greenhouses. J. of Agricultural Engineering Research 72:129-136 https://doi.org/10.1006/jaer.1998.0351
  5. Fluent Inc. 1998. FLUENT5 Users Guide
  6. Hayashi, M., T. Sugahara and H. Nakajima. 1998. Temperature and humidity environments inside a natu-rally ventilated greenhouse with the evaporative fog cooling system. Environ. Control in Biol. 36(2):97-104 (in Japanese) https://doi.org/10.2525/ecb1963.36.97
  7. Kim, H.S. 2001. Prediction of cooling effect for fog cooling system in greenhouse by CFD simulation. M.S. Diss., Seoul National Univ. (in Korean)
  8. Lee, I.B. and Ted H. Short. 1999. Analysis of the effi-ciency of natural ventilation in a multi-span green-house using CFD simulation. J. Bio-Env. Con. 8(1):9-18 Cin Korean)
  9. Singletary, I. B., R. W. Bottcher and G. R. Baughman. 1996. Characterizing effect of temperature and humid-ity on mist evaporative efficiency. Transactions of ASAE 39(5):1801-1809 https://doi.org/10.13031/2013.27656
  10. Yun, N.K. 2000. Analysis for natural ventilation and airflow characteristics in greeenhouse by CFD Simulation. Ph.D. Diss., Seoul National Univ., P. 10-35 (in Korean)
  11. 민영봉. 2000. 증발냉각에 의한 냉방효과와 적합설비.시설원예의 고온기 냉방관리 기계기술. p. 31-68
  12. 이범선. 2000. 에어쿨의 원리와 효과.시설원예의 고온기 냉방관리 기계기술. p. 95-126