• Title/Summary/Keyword: CFD 모델

Search Result 728, Processing Time 0.03 seconds

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

A Study on Development of the Secondary Reverse Vortex in Building Canyon (건물협곡에서의 2차 역회전 소용돌이 형성에 관한 연구)

  • Son, Minu;Kim, Do-Yong
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.528-535
    • /
    • 2018
  • In this study, the effect of obstacle aspect ratio on vortex in building canyon was numerically investigated using a computational fluid dynamics(CFD) model. The sensitivity experiments were performed in the cases of increasing building length(L) and height(H) by the width(W) of building canyon. The wind vector fields and secondary reverse vortex in building canyon were discussed in this study. For the horizontal vortex, the vortex zone increased as the building length increases, but the vectors at the middle of building canyon began to change in the case of L/W=2.5. In the case of L/W=3.0, the smaller primary vortex was presented with the secondary reverse vortex. For the vertical vortex, the vortex zone increased as the building height increases, but the direction of vectors at the bottom of building canyon began to change in the case of H/W=2.5. In the case of H/W=3.5, the smaller primary vortex was presented with the secondary reverse vortex.

Calculations of Pressure Difference in Orifice Flowmeter using CFD (CFD를 이용한 오리피스 유량계의 차압계산)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young;Ha, Young-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.400-403
    • /
    • 2001
  • In this study, commercial CFD code, i.e, CFX-4.3 is used to analyze the flow field and to calculate pressure differences in an orifice flowmeter. Four numerical schemes and five turbulence models are tested. Hybrid scheme and Reynolds stress model show the best performance. Chosen scheme and turbulence model are applied to predict pressure differences through the orifice for the diameter ratios, 0.3, 0.5, and 0.7. And, the results are compared with the experimental data. The results show that the calculation error is inversely proportional to the diameter ratio, and is proportional to the mass flow rate.

  • PDF

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Evaluation of Turbulent Models on the Mixing Flow Structure of $45^{\circ}$ Impinging Jet by Two Round Jets (두 원형분류에 의한 $45^{\circ}$ 충돌분류의 흔합유동구조에 대한 난류모델 평가)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.34-39
    • /
    • 2009
  • In this paper, the CFD analysis using various turbulent models has been performed to evaluate which type of turbulent models can predict well the mixing flow structure of $45^{\circ}$ impinging round jet. This CFD analysis has been carried out through the commercial Fluent software. As a result, any of turbulent models cannot predict the experimental results definitely all over the flow range. However, as compared with the experimental results, the turbulent model of realizable(RLZ) k-$\varepsilon$ only predicts well in the limited range between X/$X_0=1.1$ and X/$X_0=2.0$.

  • PDF

CFD Analysis of Turbulent Heat Transfer in a Heated Rod Bundle (가열 봉다발의 난류 열전달에 대한 전산유체역학 해석)

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.598-603
    • /
    • 2003
  • A CFD analysis has been performed to investigate turbulent heat transfer in a triangular rod bundle with a pitch-to-diameter ratio(P/D) of 1.06. Anisotropic turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel and the distributions of time mean velocity and temperature showing significantly improved agreement with the measurements over the linear standard ${\kappa}-{\varepsilon}$. The anisotropic turbulence models predicted turbulence structure in large flow region fairly well but could not predict the very high turbulent intensity of azimuthal velocity observed in narrow flow region(gap).

  • PDF

Measurements of 3D Model Shapes for Reverse Designs (역설계를 위한 3차원 모델형상 측정)

  • Doh, Deog-Hee;Cho, Kyeong-Rae;Cho, Yong-Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Reverse Design(RD) plays an important role in simulation engineering, such as CFD (Computational Fluid Dynamics) and Virtual Engineering and Design. RD becomes much more valuable when there is no shape data of the practical models for CFD grid generations. In this study, two-camera based rapid prototyping(RP) system is proposed. 3D-PTV based measurement algorithm was adopted. The developed system was applied to reconstruct three-dimensional data of a human face, a motorcycle model, a cylindrical body and a triangular pyramid.

An Experimental and CFD Analysis Study on the Buildings Distance for Fire Propagation (건축물 화재에서의 인동거리에 따른 화재 전파에 대한 실험 및 CFD해석)

  • Kim, Dong-Eun;Kim, Bong-Chan;Lee, Jae-Won;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.131-134
    • /
    • 2011
  • 최근 건축물 화재에 있어서 가장 큰 문제는 화재지점의 연소보다 연소 확대를 통한 인접건축물의 화재로 전파되는 2차적 피해를 들 수 있다. 또한 이러한 화재 피해의 경우 화재원인을 명확하게 결정내리기 힘들기 때문에 화재 조사 분야에서도 큰 어려움이 있다. 이러한 현실에서 호서대학교에서는 2009년 도시화재의 물리적 연소성상 예측모델을 위한 실제 실험을 대상으로 CFD 중 FDS를 이용하여 이를 해석하고 이를 통한 화재조사분야에서 활용범위와 신뢰도를 제시하고자 한다.

  • PDF

Case Study on Application of Ground Heat Source in Thermal Labyrinth by CFD Model (CFD 모델을 이용한 열미로의 지중열원 활용에 관한 사례 연구)

  • Min, Joon-Ki;Nam, Sun-Young
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In order to evaluate the performance of ground heat source in thermal labyrinth on pre-heating in winter season and pre-cooling in summer season, the followings are made as a conclusion through case study of H project by using the weather data from Korea meteorological administration and CFD model. By making outdoor air inlet via ground heat source in thermal labyrinth for conduction, convection and etc., the temperature rise is $13.4^{\circ}C$as the effect of pre-heating in winter season. On the other hand, as the effect of pre-cooling in summer season, the temperature decrease is $7.2^{\circ}C$. The energy saving rate by the application of ground heat source in thermal labyrinth is 9.1%.