DOI QR코드

DOI QR Code

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations

지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구

  • Received : 2020.12.31
  • Accepted : 2021.03.10
  • Published : 2021.05.01

Abstract

In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

본 연구에서는 본 연구진에서 설계한 덕티드 팬의 제자리 비행 성능을 확인하기 위해 40% 축소모델을 이용하여 지상 회전 시험 및 전산 유체 해석을 수행하였다. 본 축소 시험 모델의 블레이드 개수는 6개이며, 팬의 회전속도는 4,000RPM이다. 팬 블레이드의 콜렉티브 피치 각도는 20도에서 36도까지에서 시험을 진행하였다. 지상 시험은 정지 상태에서 1,000RPM씩 증가시키며 4,000RPM까지 성능 데이터를 계측하였다. 전산 유체 해석은 지상 시험과 동일한 조건에서 4,000RPM 시험 조건에 대해 수행하였다. 제자리 비행 성능은 추력, 파워, 덕트 추력 비, FM(Figure of Merit)으로 확인하였다. 시험과 해석 결과 간 비교를 통해 성능 결과의 신뢰성을 확보하였으며, 목표 성능은 콜렉티브 피치각 31도 이상의 조건에서 달성됨을 확인하였다.

Keywords

References

  1. Pereira, J. L., "Hover and Wind-tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design," Ph.D Dissertation, University of Meryland, 2008.
  2. Abrego, A. I. and Bulaga, R. W., "Performance Study of a Ducted Fan System," Proceeding of AHS Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting, January 2002.
  3. Ohanian, O. J. III, Gelhausen, P. A. and Inman, D. J., "Nondimensional Modeling of Ducted-Fan Aerodynamics," Journal of Aerocraft, Vol. 49, No. 1, 2012, pp. 126-140. https://doi.org/10.2514/1.C031389
  4. Jang, J. S., Baek, S. M., Kwon, J. R., Kim, H. K., Hyun, Y. O. and Yim, J. B., "Experimental Study of Aerodynamic Characteristics for a Single Ducted Fan in Ground Effect," Proceeding of The Korean Society for Aeronautical and Space Sciences, April 2018, pp. 240-241.
  5. Park, M. J., Jang, J. S. and Lee, D. J., "Numerical Study on Aerodynamic Characteristics of Ducted Fan UAV Depending on the Shape of the Duct in Hover," Proceeding of The Korean Society for Aeronautical and Space Sciences, November 2012, pp. 32-36.
  6. Ryu, M. H., Cho, L. S. and Cho, J. S., "Aerodynamic Analysis of the Ducted Fan for a VTOL UAV in Crosswind," Transaction of the Japan Society for Aeronautical and Space Science, Vol. 59, No. 2, 2016, pp. 47-55. https://doi.org/10.2322/tjsass.59.47
  7. Sheng, C. and Zhao, Q., "Numerical Investigations of Fan-in-Wing Aerodynamic Performance with Active Flow Control," Journal of Aerocraft, Vol. 54, No. 6, 2017, pp. 2317-2329. https://doi.org/10.2514/1.C034134
  8. Cai, H., Ma, G. and Li, Z., "Aerodynamic Characteristics of a Ducted Fan System Based on Momentum Source Method," Journal of Physics: Conference Series, 1300-012061, 2019.
  9. Kang, H. J., "Aerodynamic Analysis in Forward Flight for the Ducted Fan System of a Compound Rotorcraft," Proceeding of The Korean Society for Aeronautical and Space Sciences, April 2019, pp. 236-237.
  10. Leishman, J. G., Principles of Helicopter Aerodynamics, 2nd Ed., Cambridge, 2006, pp. 321-324.
  11. Reichardt, H., "Vollstaendige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen," Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 31, No. 7, 1951, pp. 208-209. https://doi.org/10.1002/zamm.19510310704