• Title/Summary/Keyword: CFD

Search Result 5,741, Processing Time 0.03 seconds

Boundary layer measurements for validating CFD condensation model and analysis based on heat and mass transfer analogy in laminar flow condition

  • Shu Soma;Masahiro Ishigaki;Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2524-2533
    • /
    • 2024
  • When analyzing containment thermal-hydraulics, computational fluid dynamics (CFD) is a powerful tool because multi-dimensional and local analysis is required for some accident scenarios. According to the previous study, neglecting steam bulk condensation in the CFD analysis leads to a significant error in boundary layer profiles. Validating the condensation model requires the experimental data near the condensing surface, however, available boundary layer data is quite limited. It is also important to confirm whether the heat and mass transfer analogy (HMTA) is still valid in the presence of bulk condensation. In this study, the boundary layer measurements on the vertical condensing surface in the presence of air were performed with the rectangular channel facility WINCS, which was designed to measure the velocity, temperature, and concentration boundary layers. We set the laminar flow condition and varied the Richardson number (1.0-23) and the steam volume fraction (0.35-0.57). The experimental results were used to validate CFD analysis and HMTA models. For the former, we implemented a bulk condensation model assuming local thermal equilibrium into the CFD code and confirmed its validity. For the latter, we validated the HMTA-based correlations, confirming that the mixed convection correlation reasonably predicted the sum of wall and bulk condensation rates.

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area (토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향)

  • Park, Soo-Jin;Choi, So-Hee;Kang, Jung-Eun;Kim, Dong-Ju;Moon, Da-Som;Choi, Wonsik;Kim, Jae-Jin;Lee, Young-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, the effects of differential heating by land-use types on flow and air temperature at an Seoul Automated Synoptic Observing Systems (ASOS) located at Songwol-dong, Jongno-gu, Seoul was analyzed. For this, a computation fluid dynamics (CFD) model was coupled to the local data assimilation and prediction system (LDAPS) for reflecting the local meteorological characteristics at the boundaries of the CFD model domain. Time variation of temperatures on solid surfaces was calculated using observation data at El-Oued, Algeria of which latitude is similar to that of the target area. Considering land-use type and shadow, surface temperatures were prescribed in the LDAPS-CFD coupled model. The LDAPS overestimated wind speeds and underestimated air temperature compared to the observations. However, a coupled LDAPS-CFD model relatively well reproduced the observed wind speeds and air temperature, considering complicated flows and surface temperatures in the urban area. In the morning when the easterly was dominant around the target area, both the LDAPS and coupled LDAPS-CFD model underestimated the observed temperatures at the Seoul ASOS. This is because the Kyunghee Palace located at the upwind region was composed of green area and its surface temperature was relatively low. However, in the afternoon when the southeasterly was dominant, the LDAPS still underestimated, on the while, the coupled LDAPS-CFD model well reproduced the observed temperatures at the Seoul ASOS by considering the building-surface heating.

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Development of Air Flow Simulator in Agricultural Facility based on Virtual Reality (가상현실 기반 농업시설 공기유동 시뮬레이터의 개발)

  • Noh, Jae Seung;Kim, Yu Yong;Yoo, Young Ji;Kwon, Jin Kyung;Lee, In Bok;Kim, Rack Woo;Kim, Jun Gyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.16-27
    • /
    • 2019
  • Using virtual reality technology, users can learn and experience many interactions in virtual space like the actual physical space. This study was conducted to develop air flow simulator that allows farmers and consultants to consult air flow through VR devices by creating a greenhouse or pigpen model. It can help educate farmers about the importance of ventilation effects for agricultural facilities. We proposed CFD visualization system by building a virtual reality environment and constructing database of CFD and structure of agricultural facilities. After consultants can set up situations according to environmental conditions, the users experience the visualized air flow of agricultural facility according to the ventilation effects. Also it can provide a quantified environmental distribution in the agricultural facility. Currently, the CFD data in agricultural facilities are established during winter and summer. In order to experience various environmental conditions in the developed system, The experts need to run CFD data under various environmental conditions and register them in the system requirements.

A Performance Prediction of a Vertical-type Geothermal Heat Exchanger by CFD Analysis (CFD 해석에 의한 수직형 지열교환기의 성능예측)

  • Woo, Sang-Woo;Hwang, Kwang-Il;Kim, Jong-Hun;Shin, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2007
  • This study proposes a CFD(Computational Fluid Dynamics) analysis as a method of verification of the designed-data and a supplement of the insufficient experiences in geothermal system, which shows a rapid growth among the renewable energies. The followings are the results. FLUENT 6.2.12 is used as a CFD tool on this study, with the equations of continuity, motion, energy for unsteady flow through pipes and k-epsilon turbulent model. S-type model which has one borehole with diameter 12m by depth 206m and T-type model which has 3 boreholes with $12m{\times}20m{\times}206m$ are proposed, and also the boundary conditions are described. The temperature differences between temperatures by CFD analysis and by on-site measurement are less than 1.5%, this shows a high reliability of CFD analysis process which this study proposes. After 11 days simulation operated 12 hours interval On/Off mode, it is clearly predicted that the outlet temperatures of geothermal pipes are increased by $1.2^{\circ}C$, and $2.2^{\circ}C$ after 4 months. And the outlet temperatures of geothermal pipes increased with increase of the mass flow rates through the pipes. T-type model shows that the 4m distance between boreholes are reasonable because the temperatures at 2m and 6m from boreholes are nearly same.

Flow Analysis of Parshall Flume Using FLOW-3D (FLOW-3D에 의한 파샬플륨 흐름 해석)

  • Oh, Byoung-Dong;Kim, Kyoung-Ho;Lee, Whan-Gi;An, Sang-Do
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.375-386
    • /
    • 2004
  • A water shortage is one of the most important factors for development and management of water resources. For reliable water shortage measurement in a stream, Korea Water Resources Corporation(KOWACO) founded five foot Parshall flume at Yong-dam experimental watershed in 2000. The Parshall flume has a specially designed shape to facilitate flow measurements by eliminating sediment deposition problem that could lead to an incorrect measurement. In this study, computational fluid dynamics(CFD) model was used to analyze flow behavior of Parshall Flume under free discharge of five headwater level cases. The flow rates computed by CFD model are compared with those by ISO's formula, USBR's formula and stage-discharge rating curves. Flow rates computed by ISO's and USBR's formula are mostly same, but flow rate by CFD model is larger than empirical value by 9% and flow rate by stage-discharge rating curves is less than empirical value by 16%.

CFD Simulation Study to analyze the Dispersion and Explosion of Combustible Gas (CFD를 이용한 가연성 가스의 확산 및 폭발 Simulation)

  • Jang, Chang-Bong;Lee, Hyang-Jik;Lee, Min-Ho;Min, Dong-Chul;Back, Jong-Bae;Ko, Jae Wook;Kwon, Hyuck-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.58-65
    • /
    • 2012
  • Various models are currently applied to predict the dispersion of leaked combustible gas and overpressure from a vapor cloud explosion(VCE). However, those models use simple approaches where topography and barriers of anti-leakage facilities and the effects of buildings were not sufficiently taken into considerations. For this reason, this study has proposed the dispersion process of leaked gas, distribution patterns, and flames and overpressure generated from gas explosions in 2D and 3D virtual spaces by reviewing more accurately analyzable computational fluid dynamics (CFD) model by considering various variables including combustion types of leaked substances, geometry of facility, warm currents, barriers, the influence of wind, and others. The CFD analysis results are anticipated to be usefully applied for the risk analysis of explosion and for the risk-based design.

Numerical Analysis of Turbulent Flow around Tube Bundle by Applying CFD Best Practice Guideline (CFD 우수사례 지침을 적용한 관 다발 주위의 난류유동 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheng, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.961-969
    • /
    • 2013
  • In this study, the numerical analysis of a turbulent flow around both a staggered and an inline tube bundle was conducted using ANSYS CFX V.13, a commercial CFD software. The flow was assumed to be steady, incompressible, and isothermal. According to the CFD Best Practice Guideline, the sensitivity study for grid size, accuracy of the discretization scheme for convection term, and turbulence model was conducted, and its result was compared with the experimental data to estimate the applicability of the CFD Best Practice Guideline. It was concluded that the CFD Best Practice Guideline did not always guarantee an improvement in the prediction performance of the commercial CFD software in the field of tube bundle flow.

Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine (선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용)

  • Kim, Han-Sang;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.