• 제목/요약/키워드: CFD:Computational Fluid Dynamics

검색결과 2,015건 처리시간 0.026초

전산유체역학을 이용한 무기체계의 모델링 및 시뮬레이션 적용에 관한 연구 (A study on the Modeling & Simulation of Weapon Systems Application using the Computation Fluid Dynamics)

  • 이영욱
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.14-20
    • /
    • 2014
  • 본 연구는 무기체계 획득의 신뢰성과 연구개발의 효과를 증대하기 위한 모델링과 시뮬레이션 방법을 전산유체역학을 이용하여 연구하였다. 모델링과 시뮬레이션을 이용한 시험 평가가 무기체계의 획득에 신뢰성을 줄 수 있고, 시험에 필요한 시간과 비용의 절감, 사전에 예측하고 사후에 검증이 가능한 자료를 제공할 수 있다. 그러나 현재 우리의 무기체계 획득에서는 모델링과 시뮬레이션을 적극적으로 활용하지 않고 있으며 검증을 위한 소프트웨어 사용도 제한되고 있는 실정이다. 따라서 본 연구에서는 전산유체역학을 이용한 모델링과 시뮬레이션을 위해 GAMBIT과 FLUENT를 이용하여 모델링과 시뮬레이션을 실시하였다. 그 결과 기존의 연구보다 더 좋은 결과 확인하였고 향후 무기체계의 획득과 연구개발에 많이 활용될 것으로 기대된다.

수중유영로봇 Crabster의 최적 유영 구현 (Optimal Swimming Motion for Underwater Robot, Crabster)

  • 김대현;이지홍
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L.;Xiang, Jia Y.;Dong, Hu Y.
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.513-524
    • /
    • 2015
  • In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

CFD를 이용한 우류식 응집지 수리해석에 관한 연구 (A CFD-based simulation study of a serpentine flocculation basin for potable water treatment)

  • 김성수;최종웅;박노석;김관엽
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.225-233
    • /
    • 2014
  • This paper presents a Computational Fluid Dynamics(CFD) based simulation and experimental tracer test of flow pattern and turbulent energy dissipation inside a serpentine flocculation basin with continuous operation. Research focused on the evaluation of a specific flow pattern on the hydraulic behavior on the flocculation basin. From the results of CFD simulation and actual tracer test, both results were in good accordance with each other. Also, each Morill index were calculated as 1.5 from CFD simulation and 1.7 from actual tracer test, respectively. Especially, turbulence energy was dissipated relatively higher in the vicinity of inlet to the flocculation basin than other region. The differences between the CFD simulation and actual tracer test were 1.4 min in $T_{50}$, and 1.3 min in $T_p$, respectively.

CFD APPLICATION TO THE REGULATORY ASSESSMENT OF FAC-CAUSED CANDU FEEDER PIPE WALL THINNING ISSUE

  • Kang, Dong-Gu;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.37-48
    • /
    • 2008
  • Flow fields inside feeder pipes have been simulated numerically using a CFD (computational fluid dynamics) code to calculate the shear stress distribution, which is the most important factor in predicting the local regions of feeder pipes highly susceptible to FAC (flow-accelerated corrosion)-induced wall thinning. The CFD approach, with schemes used in this study, to simulate the flow situations inside the CANDU feeder pipes has been verified as it showed a good agreement between the investigation results for the failed feedwater pipe at Surry unit 2 plant in the U.S. and the CFD calculation. Sensitivity studies of the three geometrical parameters, such as angle of the first and second bends, length of the first span between the grayloc hub and the first bend, and length of the second span between the first and the second bends have been performed. CFD analysis reveals that the local regions of feeder pipes of Wolsung unit 1 in Korea, on which wall thickness measurements have been performed so far, are not coincident with the worst regions predicted by the present CFD analysis located in the connection region of straight and bend pipe near the inlet part of the bend intrados. Finally, based on the results of the present CFD analysis, a guide to the selection of the weakest local positions where the measurement of wall thickness should be performed with higher priority has been provided.

전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구 (Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique)

  • 김동현;장태진;권혁준;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

  • Bumrungpetch, Jeerasit;Tan, Andy Chit;Liu, Shu-Hong;Luo, Xian-Wu;Wu, Qing-Yu;Yuan, Jian-Ping;Zhang, Ming-Kui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2014
  • Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left - 100mmHg and right - 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석 (Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower)

  • 김동현;류경중;김요한;김성복;김광원;남효우;이명구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF