• Title/Summary/Keyword: CFD:Computational Fluid Dynamics

Search Result 2,015, Processing Time 0.032 seconds

Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles (베인노즐 출구각도에 따른 100kW급 구심터빈의 성능 및 내부유동의 영향)

  • Mo, Jang-Oh;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • In this study, we analysed the influence of the performance and inflow flow of a radial inflow turbine with the variation of vane nozzle exit angles for a 100kW class turbine applicable in the waste heat recovery system. For this, three-dimensional CFD analysis was performed using commercial code called ANSYS Fluent 12.1. As the vane nozzle exit angle was more increased the reattachment region near blades of the vane nozzle got smaller, and also the Mach number at vane nozzle exit was observed to be 1 due to the effect of the cross section reduction. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power.

Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel (곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구)

  • Jang, Hyun;Park, In Sung;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • In this study, numerical analysis of curved channel steam-methanol reformer was conducted using the computational fluid dynamics (CFD) commercial code STAR-CCM. A pre-numerical analysis of reference model with a cylindrical channel reactor was performed to validate the combustion model of the CFD commercial code. The result of advance validation was in agreement with reference model over 95%. After completing the validation, a curved channel reactor was designed to determine the effects of shape and length of flow path on methanol conversion efficiency and generation of hydrogen. Numerical analysis of the curved-channel reformer was conducted under various flow rate ($10/15/20{\mu}l/min$). As a result, the characteristics of flow and mass transfer were confirmed in the cylindrical channel and curved channel reactor, and useful information about methanol conversion efficiency and hydrogen generation was obtained for various flow rate.

Lubrication Characteristics of Micro-Textured Slider Bearing: Effect of Dimple Density (Micro-Texturing한 Slider Bearing의 윤활특성 : 딤플 밀도의 영향)

  • Park, Tae Jo;Lee, Joon Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.437-442
    • /
    • 2013
  • In recent times, surface texturing methods have been widely applied to reduce friction and improve the reliability of machine components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, a numerical analysis is carried out to investigate the effect of uniformly spaced hemispherical dimples on the lubrication characteristics of a slider bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The pressure distributions, load capacity, leakage flowrate, and friction force are strongly affected by the dimple diameter and the number of dimples. In particular, the load capacity and friction force decrease linearly with the dimple density whereas the leakage increases. These results can be used for designing the optimum dimple characteristics in order to improve the lubrication performance of slider bearings, for which further studies are required.

Combustion Characteristics of Coal-Fired Boiler Depending on the Variations in Combustion Air Supply Method (미분탄 보일러의 연소용 공기공급 변화에 따른 노내 연소상태 해석)

  • Seo, San-Il;Park, Ho-Young;Kang, Dong-Soo;Jeong, Dong-Hae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • 3-D CFD(Computational Fluid Dynamics) work were carried out to investigate the combustion characteristics in a boiler depending on the variations in air supply condition. For the gas temperature, $O_2$, NO, SOx at the outlet of economizer, the predicted values were been compared with the measured data. With the verified CFD model, the effects of air flow rates through SOFA(Separated Over Fire Air) and CCOFA(Closed Coupled Over Fire Air) on the combustion behavior in a boiler were simulated, and the distributions of NOx and gas temperature were mainly compared each other. The change in SOFA air flow rate gave the more sensitive effect on NOx than that in CCOFA. The distributions of gas temperature at convection path are differed with the changes in SOFA and CCOFA flow rate, so the combustion modification such as yaw anlge adjustment are required to get an enhanced gas temperature distribution.

Development and Performance Evaluation of Body Armor for Wear Comfort Enhancement (착용쾌적성이 향상된 방탄복 개발과 성능평가)

  • Kim, Soyoung;Lee, Yejin;Hong, Kyunghi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.10
    • /
    • pp.1050-1057
    • /
    • 2012
  • This study helps develop a cool body armor that maintains a tight-fit configuration to the body surface and evaluates the performance of newly developed body armor in a wear test. Three types of body armor were used for evaluation. One was a tight fitting body armor that was constructed to improve the degree of fit and ease of movement for Korean soldier using 3D technology. Another was ventilating body armor with attached spacers on the shoulder to reduce the thermal stress on the soldier. The third was a prevailing body armor produced by a Korean body armor company. In order to evaluate the performance of the body armor, a human wear test, a thermal mannequin test, and computational fluid dynamics (CFD) were executed. Five subjects participated in the wear test. Subjective wear sensation, total amount of sweat and dynamic change of clothing microclimate were observed during and after exercise on a treadmill; subsequently, it was found that subjects rated tight fitting body armor and ventilating body armor lighter, drier, and easier to move than the conventional body armor (p<.05). Total amount of sweat was the least in the case of ventilating body armor. The thermal resistance and vapor resistance of the ventilating body armor were improved remarkably. In addition, the skin temperature of the ventilating body armor with spacers was lower than the tight fitting body armor by at least $1^{\circ}C$ in the CFD result. It is noted that thermal-wet comfort of the 3D body armor with ventilating feature is superior to the conventional body armor, especially when the ventilating channel is not closed due to a backpack.

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics (능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석)

  • Kim, Do-Hyung;Kang, Hee Jung;Wie, Seong-Yong;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.855-864
    • /
    • 2013
  • Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.

Characteristic Features and Effect of Neo-Hydrofoil Impeller Applied in Sewage Treatment Plants (하수처리 공법별 네오하이드로포일 교반기의 적용 특성 및 효과)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • In this study, a newly developed agitator with hydrofoil impeller applied to actual biological process in advanced wastewater treatment plant was evaluated. Several series of experiments were conducted in two different wastewater treatment plants where actual problems have been occurred such as the production of scums and sludge settling. For more effective evaluation, computational fluid dynamics (CFD) and measurements of MLSS (Mixed Liquor Suspended Solids) and DO (Dissolved Oxygen) were used with other measuring equipments. After the installation of one unit of vertical hydrofoil agitator in plant A, scum and sludge settling problems were solved and more than seventy percent of operational energy was saved. In case of plant B, there were three cells of each anoxic and anaerobic tanks, and each cell had one unit of submersible horizontal agitator. After the integration of three cells to one cell in each tank, and installation of one vertical hydrofoil agitator per tank, all the problems caused by improper mixing were solved and more than eighty percent of operational energy was found to be saved. Simple change of agitator applied to biological process in wastewater treatment plant was proved to be essential to eliminate scum and sludge settling problems and to save input energy.

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

The Effects of Windbreaks on Reduction of Suspended Particles (방풍벽에 의한 비산 먼지 저감 효과)

  • Song, Chang-Keun;Kim, Jae-Jin;Song, Dong-Woong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • The effects of windbreaks on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the ${\kappa}-{\varepsilon}$ turbulence closure scheme based on the renormalization group (RNG) theory. In the control experiment, the recirculation zones behind the storage piles are generated and, as a whole, relatively monotonous flow patterns appear. When the windbreaks with the 0% porosity are constructed, the recirculation zones are generated by the windbreaks and very complicated flow patterns appear due to the interference between the windbreaks and storage piles. The porosity of the windbreaks suppresses the generation of the recirculation zone and decreases the wind velocity in the windbreaks as well as that outside the windbreaks. As the emission of suspended particles from the storage piles are closely related with the friction velocity at the surfaces of the storage piles, variation of the friction velocity and total amount of the emission of the suspended particles with the height and porosity of the windbreaks are investigated. The results show that higher and more porous windbreaks emit less suspended particles and that the reduction effect of the porosity is still more effective than that of the height. In the case of the windbreak with 30 m height and 50% porosity, friction velocities above the storage piles are smaller than the critical friction velocity above which particles would be suspended. As a result, total amount of suspended particles are much fewer than those in other cases.

The Effects of Obstacle Aspect Ratio on Surrounding Flows (장애물 외관비가 주변 흐름에 미치는 영향)

  • Lee, Jae-Jin
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.381-391
    • /
    • 2007
  • The characteristics of flow around a single obstacle with fixed height and varied length and width are numerically investigated using a computational fluid dynamics (CFD) model. As the obstacle length increases, flow distortion near the upwind side of the obstacle increases and the size of the recirculation zone behind the obstacle also increases. As the obstacle width increases, the size of the recirculation zone decreases, despite almost invariable flow distortion near the upwind side of the obstacle. Flow passing through an obstacle is separated, one part going around the obstacle and the other crossing over the obstacle. The size of the recirculation zone is determined by the distance between the obstacle and the point (reattachment point) at which both the flows converge. When the obstacle width is relatively large, flows are reattached at the obstacle surface and their recoveries occur. Resultant shortening of the paths of flows crossing over and going around decreases the size of the recirculation zone. To support this, the extent of flow distortion defined based on the change in wind direction is analyzed. The result shows that flow distortion is largest near the ground surface and decreases with height. An increase in obstacle length increases the frontal area fraction of flow distortion around the obstacle. In the cases of increasing the width, the frontal area fraction near the upwind side of the obstacle does not change much, but near the downwind side, it becomes larger as the width increases. The frontal area fraction is in a better correlation with the size of the recirculation zone than the building aspect ratios, suggesting that the frontal area fraction is a good indicator for explaining the variation in the size of the recirculation zone with the building aspect ratios.