• Title/Summary/Keyword: CF8M

Search Result 164, Processing Time 0.035 seconds

Environmental Fatigue Behaviors of CF8M Stainless Steel in 310℃ Deoxygenated Water - Effects of Hydrogen and Microstructure (산소가 제거된 310℃ 순수환경에서 CF8M 주조 스테인리스강의 환경 피로거동 - 수소 및 미세구조의 영향)

  • Jang, Hun;Cho, Pyungyeon;Jang, Changheui;Kim, Tae Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a $310^{\circ}C$ deoxygenated water environment. The reduction of LCF life of CF8M in a $310^{\circ}C$ deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a $310^{\circ}C$ deoxygenated water.

A Study on Fracture Toughness with Thermal Aging in CF8M/SA508 Welds (CF8M과 SA508 용접재의 열화에 따른 파괴인성에 관한 연구)

  • Woo Seung-Wan;Choi Young-Hwan;Kwon Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1173-1178
    • /
    • 2006
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are according to the process in the thermal notch is created in the heat affected zone(HAZ) of CF8M and deposited zone. From the experiments, the $J_{IC}$ value notched in HAZ of CF8M presented a rapid decrease up to 300 hours at $430^{\circ}C$ and slowly decreased according to the process in the thermal aging time. Also, the $J_{IC}$ value presented a lower value than that of the CF8M base metal. And, the $J_{IC}$ of the deposited zone presented the lowest value of all other cases.

Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition (PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구)

  • Jeong, Ill-Seok;Lee, Yong-Sung;Kim, Sang-Jai;Song, Taek-Ho;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF

Evaluation of the $\sigma$-Phase Degradation for Cast Stainless Steel CF8M by the Electrochemical Method (전기화학적 방법에 의한 주조 스테인리스강 CF8M $\sigma$상 열화평가)

  • Gwon, Jae-Do;Kim, Jung-Hyeong;Park, Jung-Cheol;Byeon, Jang-Hwan;Lee, U-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2014-2021
    • /
    • 1999
  • The present investigation is concerned with the degradation characteristics of cast stainless steel(CF8M), exposed to the $\sigma$-phase degradation at $700^{\circ}C$. In the present paper, the degradation of CF8 M at $700^{\circ}C$ is evaluated by a non-destructive test, DL-EPR(double loop electrochemical potentiokinetic reactivation). The surface of specimens is observed by using scanning electron microscopy after DL-EPR test. Also. chromium contents of matrix, grain boundary and ferrite phase are analyzed by electron probe X-ray micro analyzer. Through the experiments, the following results are obtained 1) The degree of sensitization(DOS) of CF8M aged up to 15hr at $700^{\circ}C$ is increased with acing time while that is decreased with aging time from 15hr to 150hr. 2) The impact energy decreases with increase of $\sigma$-phase while DOS increases with $\sigma$-phase until aging time reaches to 15hr. After the aging time. 15hr, the $\sigma$-phase and the rate of impact energy with respect to aging time decreases. Therefore the degradation behavior of the CF8M can be evaluated by comparing SEM micrographs and the value of DOS.

Evaluation of Material Properties Considering Thermal Embrittlement for Accelerated aged CF-8M and CF-8A Cast Austenitic Stainless Steel (가속열화된 CF-8M 및 CF-8A 주조 스테인리스강의 열취화 재료물성치 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.118-123
    • /
    • 2004
  • Cast austenitic stainless steel have been widely used for primary coolant piping in light water reactors. This material is subject to thermal embrittlement at reactor operating temperature. CF-8M and CF-8A cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. Thermal embrittlement results in spinodal decomposition of delta-ferrite leading to decreased fracture toughness. In this study, the specimens were prepared using an accelerated aging method. The measurement of ferrite content, Charpy impact test and J-R test were performed to verify the predicting equation for aged material properties. In case of above 25% ferrite content, predicted result of J-R curve might be non-conservative.

  • PDF

Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel (CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가)

  • Kim, C.;Park, H.B.;Jin, T.E.;Jeong, I.S.;Seok, C.S.;Park, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

Effects of Thermal Aging on the Fracture Characteristic in the Dissimilar Welds (CF8M과 SA508 용접재의 열화에 따른 파괴특성 평가)

  • Woo, Seung-Wan;Kwon, Jae-Do;Choi, Sung-Jong;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.72-77
    • /
    • 2004
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are prepared one type, which notch is created in the heat affected zone(HAZ) of CF8M. And, the specimens for fatigue crack growth tests are prepared in three classes, which notches are created at the center of deposited zone, the HAZ of CF8M, and the HAZ of SA508 cl.3. From the experiments, the J-integral values with the increase of aging time decrease, and the differences of the fatigue crack growth behaviors are relatively small in the three classes specimens.

  • PDF

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Yeong-Sin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Il-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.