• 제목/요약/키워드: CDK2 inhibitor

검색결과 99건 처리시간 0.023초

인체 신경아세포종에서 cAMP 처리에 의한 pRB의 인산화 억제 및 p21WAF1/CIP1의 유도 (Inhibition of pRB Phosphorylation and Induction of p21WAF1/CIP1 Occur During cAMP-induced Growth Arrest in Human Neuroblastoma Cells)

  • Park, Yung-Hyun;Lee, Sang-Hyeon
    • 생명과학회지
    • /
    • 제13권5호
    • /
    • pp.642-650
    • /
    • 2003
  • 인체 신경아세포종의 성장에 미치는 cAMP의 영향을 조사하기 위하여 Ewing's sarcoma 세포주인 CHP-100 세포에 dibutyry1-cAMP 및 8-bromo-cAMP를 처리하였다. 두 종류의 cAMP analog처리 시간 증가에 따라 CHP-100 세포의 증식이 처리 시간 의존적으로 억제되었으며, 이는 핵의 형태변화 및 DNA 단편화 현상을 수반한 apoptosis 유발과 연관성이 있었다. 또한 DNA flow cytometry 분석결과 cAMP는 세포주기 G1기 특이적 arrest를 유발하였다. cAMP 처리에 의하여 retinoblastoma 단백질(pRB)의 인산화가 억제되었으며, 전사조절인자 E2F-1과의 결합이 증대되었다. cAMP는 cyclin-dependent kinase (Cdk) 2 및 cyclin E 단백질의 발현변화에는 영향을 미치지 않았으나, 그들의 kinase 활성은 처리시간 의존적으로 매우 감소되었다. 또한 cAMP 처리에 의하여 Cdk inhibitor인 $p21^{WAF1/CIP1$의 발현이 증가되었으며, 증가된 p21 단백질은 Cdk2와 강한 결합을 형성하고 있었다. 이상의 결과에서 cAMP의 암세포 성장억제 효과에 pRB 및 p21이 매우 중요한 역할을 함을 알 수 있었다.

GENISTEIN-INDUCED G2/M ARREST IS ASSOCIATED WITH p53-INDEPENDENT INDUCTION OF Cdk INHIBITOR $p21^{WAF1/CIP1}$ IN HUMAN CANCER CELLS

  • Park, Yung-Hyun
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.9-13
    • /
    • 2001
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase II activities. Genistein has been shown to have anticancer proliferation, differentiation and chemopreventive effects. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of p53-null human prostate carcinoma cells.(omitted)

  • PDF

Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제 (Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells)

  • 최영현
    • 동의생리병리학회지
    • /
    • 제19권1호
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

Ginsenoside Rh2 inhibits proliferation of human promyelocytic HL-60 leukemia cells via $G_0/G_1$ phase arrest and induction of differentiation

  • Cho, Seoung-Hee;Kim, Dong-Hyun;Lee, Kyung-Tae
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2006년도 춘계학술대회
    • /
    • pp.3-12
    • /
    • 2006
  • 1 The present work was performed to investigate the effects of ginsenoside Rh2 on proliferation, cell cycle-regulation and differentiation of human leukemia HL-60 cells as well as the underlying mechanisms for these effects. 2 Ginsenoside Rh2 potently inhibited the proliferation of HL-60 cells in both a dose- and time-dependent manner with an $IC_{50}$, $20{\mu}M$. 3 DNA flow-cytometry indicated that ginsenoside Rh2 markedly induced a $G_1$ phase arrest of HL-60 cells. 4 Among the $G_1$ phase cell cycle-related proteins, the levels of cyclin-dependent kinase(CDK)4, 6 and cyclin D1, cyclin D2, cyclin D3 were reduced by ginsenoside Rh2, whereas the steadystate levels of CDK2 and cyclin E were unaffected. 5 The protein levels of a CDK inhibitor p16, $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ were markedly increased by ginsenoside Rh2. 6 Ginsenoside Rh2 markedly enhanced the binding of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ with CDK2 and CDK6, resulting in the reduced activity of both kinases and the hypophosphorylation of Rb protein. 7 We furthermore suggest that ginsenoside Rh2 is a potent inducer of the differentiation of HL-60 cells, based on observations such as a reduction of the nitroblue tetrazolium level, an increase in the esterase activities and phagocytic activity, morphology changes, and the expression of CD11b, CD14, CD64 and CD66b surface antigens. 8 In conclusion, the onset of ginsenoside Rh2-induced the $G_0/G_1$ arrest of HL-60 cells prior to the differentiation is linked to a sharp up-regulation of the $p21^{CIP1/WAF1}$ level and a decrease in the CDK2, CDK4 and CDK6 activities. This is the first report demonstrating that ginsenoside Rh2 potently inhibits the proliferation of human promyelocytic HL-60 cells via the $G_1$ phase cell cycle arrest and differentiation induction.

  • PDF

온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향 (G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells)

  • 구인모;신흥묵
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.

인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구 (Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells)

  • 김의겸;명유호;송관성;이기홍;류충호;최영현
    • 생명과학회지
    • /
    • 제16권4호
    • /
    • pp.589-597
    • /
    • 2006
  • 본 연구에서는 T24 인체방광암 및 U937 백혈병 세포의 증식에 미치는 genistein의 영향을 조사 하였다. Genistein이 처리된 T24 및 U937 세포는 처리 농도 의존적으로 세포의 증식이 현저히 감소되었으며 심한 형태적 변형이 동반되었으나, U937 세포에서 보다 높은 감수성을 보였다. 이러한 T24 및 U937 세포의 증식억제 및 형태 변형은 G2/M기의 세포주기 억제 및 apoptosis 유발과 연관성이 있음을 flow cytometry를 이용한 세포주기의 분석을 통하여 확인하였다. T24 세포에서 genistein에 의한 G2/M arrest는 cyclin A, cyclin B1 및 Cdc25C 등의 단백질 발현 감소와 연관성이 있었으나, 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현에는 큰 변화가 없었다. U937 세포에서 genistein에 의한 G2/M arrest는 cyclin B1 및 p53 비의존적인 p21의 발현 증가와 연관성이 있었다. 이상의 결과들은 현재까지 거의 연구가 진행된 바 없는 인체방광암 및 백혈병 세포에서 genistein의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 genistein을 포함한 그와 유사한 항암제 후보물질들의 연구에 있어서 기초 자료로서 사용될 수 있을 것으로 생각된다.

황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발 (Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells)

  • 박동일;정진우;박철;홍수현;신순식;최성현;최영현
    • 대한한의학방제학회지
    • /
    • 제23권2호
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.