• Title/Summary/Keyword: CDG method

Search Result 6, Processing Time 0.02 seconds

Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire (메탄화재의 이산화탄소 생성법에 의한 화재발열량 측정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO2 mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO2 in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

Numerical Simulation of Depth-Averaged Flow with a CDG Finite Element Method (CDG 유한요소법을 이용한 수심적분 흐름의 수치모의)

  • Kim, Tae Beom;Choi, Sung-Uk;Min, Kyung Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.447-457
    • /
    • 2006
  • This paper presents a numerical model for the simulations of 2D depth-averaged flows. The shallow water equations are solved numerically by the Characteristic Dissipative Galerkin (CDG) finite element method. For validation, the developed model is applied to the hydraulic jump. The computed results are compared with the analytical solution, revealing good agreement. In addition, flow in a contracting channel showing standing waves is simulated. The calculated water surface profile appears to be qualitatively consistent with the observed data. The foregoing results indicate that the model is capable of simulating the abrupt change in flow field. Next, the model is applied to the flow in a $180^{\circ}$ curved channel. The simulated results show that the velocity near the inner bank is faster than that near the outer bank and the water depth near the inner bank is shallower than that near the outer bank. However, the simulated results show that the velocity distribution across the channel is almost uniform in the bend except the reach close to the end of the bend. This is due to the limitation of the governing equations in which the transverse convection of momentum by the secondary flows along a channel bend is not taken into account.

Deadlock Detection and Resolution for Flexible Job Routing (유연 공정 라우팅에서의 고착 탐지 및 해결)

  • 임동순;우훈식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.58
    • /
    • pp.49-58
    • /
    • 2000
  • In order to resolve a deadlock problem in manufacturing systems, three main methods have been proposed-prevention, avoidance, and recovery. The prevention and avoidance methods require predicting deadlocks in advance in order to prohibit them. In contrast, the recovery method allows a system to enter a deadlock state, then resolves it usually using a common buffer. In this paper, a deadlock recovery method considering the impact of flexible job routings is proposed. This method is based on capacity-designated directed graph (CDG) model representing current requesting and occupying relations between Jobs and resources in order to detect a deadlock and then recovers it.

  • PDF

Numerical Formulation for Flow Analysis of Dredged Soil (준설토 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.

The Unsaturated Stress Strain Behavior of CDG (Completely Decomposed Granite) Soils (완전 풍화된 화강풍화토의 불포화 응력-변형률 거동 특성)

  • Ham, Tae-Gew;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.21-28
    • /
    • 2010
  • Decomposed granite soil is the most common type of soils. The measurement of the stress-strain-strength behavior of anisotropic decomposed granite soils is very important for the deformation and stability analysis of slopes, retaining walls, excavations. A series of unsaturated-drained triaxial compression tests were performed to know unsaturated strength properties. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane): 0, 45 and 90 degrees. The compression strain of specimens subjected to an isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clearly shown with low confining stress. The effect of the sedimentation angle on the compressive strength and deformation was more evident in saturated specimens. A new method of predicting the shear strength of unsaturated decomposed granite soils, considering compaction angles, was proposed.

Evaluation of low vacuum gauge using deadweight piston gauge (분동식압력계를 이용한 저진공게이지의 평가)

  • Woo, Sam-Yong;Choi, In-Mook;Song, Han-Wook;Kim, Boo-Shik
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.244-249
    • /
    • 2007
  • Deadweight piston gauge have been widely used as a fundamental instrument of precise pressure measurement because they are robust, accurate, potable, convenient to use and are able to realize the definition of pressure as farce per unit area. Basically, a deadweight piston gauge consists of a piston mounted vertically in a close-fitting cylinder filled with a gas and weights of known mass values. The pressure to be measured is applied to the base of the piston generating an upward vertical force, and is balanced by the downward gravitational force generated by weights. These instruments can be used to measure pressures above 10 kPa because of tare weights including piston. However, using a variable bell-jar pressure method and a newly developed weight loading device we can extend the application range of deadweight piston gauge to lower pressures. In this paper, we present the practical calibration results for two CDGs(Capacitance diaphragm gauge, MKS) with full-scale ranges of 1.33 kPa and 13.3 kPa, respectively.