DOI QR코드

DOI QR Code

Numerical Simulation of Depth-Averaged Flow with a CDG Finite Element Method

CDG 유한요소법을 이용한 수심적분 흐름의 수치모의

  • 김태범 (연세대학교 공과대학 사회환경시스템공학부) ;
  • 최성욱 (연세대학교 공과대학 사회환경시스템공학부) ;
  • 민경덕 (연세대학교 이과대학 지구시스템과학과)
  • Received : 2005.09.23
  • Accepted : 2006.07.26
  • Published : 2006.09.30

Abstract

This paper presents a numerical model for the simulations of 2D depth-averaged flows. The shallow water equations are solved numerically by the Characteristic Dissipative Galerkin (CDG) finite element method. For validation, the developed model is applied to the hydraulic jump. The computed results are compared with the analytical solution, revealing good agreement. In addition, flow in a contracting channel showing standing waves is simulated. The calculated water surface profile appears to be qualitatively consistent with the observed data. The foregoing results indicate that the model is capable of simulating the abrupt change in flow field. Next, the model is applied to the flow in a $180^{\circ}$ curved channel. The simulated results show that the velocity near the inner bank is faster than that near the outer bank and the water depth near the inner bank is shallower than that near the outer bank. However, the simulated results show that the velocity distribution across the channel is almost uniform in the bend except the reach close to the end of the bend. This is due to the limitation of the governing equations in which the transverse convection of momentum by the secondary flows along a channel bend is not taken into account.

본 연구에서는 2차원 수심 적분된 흐름을 모의하기 위한 수치모델을 개발하였다. 유한요소법의 일종인 Characteristic Dissipative Galerkin(CDG) 기법을 적용시켜 천수방정식의 수치해를 구한다. 모델 검증을 위해서 1차원 도수문제에 적용하였고, 계산결과와 해석해를 비교할 때 만족스러운 결과를 얻었다. 정상파를 보이는 단면축소 수로에서의 흐름을 모의한 결과, 실험결과와 유사한 수면분포를 얻었다. 이러한 검증 과정을 통해서 본 수치모델을 이용하여 흐름영역이 갑작스럽게 변화하는 경우에도 모의 가능함을 알았다. 또한 $180^{\circ}$ 만곡수로에 적용한 결과, 만곡부 내측의 유속이 외측에 비해서 크며, 만곡부 내측의 수심은 외측에 비해서 작은 만곡부 흐름특성을 잘 나타내고 있다. 그러나 만곡수로에서 이차류에 의한 운동량의 횡방향 이송을 고려하지 않는 지배방정식의 한계점으로 인해서, 만곡부 끝단을 제외한 만곡부 전체에 걸쳐서 단면상의 종방향 유속이 일정한 분포를 보이고 있다.

Keywords

References

  1. 한건연, 김상호(2000) Petrov-Galerkin 기법에 의한 하천에서의 이송-확산 해석. 대한토목학회논문집, 대한토목학회, 제20권 제28호, pp. 251-259
  2. 한건연, 박경옥, 백창현, 최규현(2005) SU/PG 기법에 의한 2차원 하천 동수역학 해석. 대한토목학회논문집, 대한토목학회, 제25권 제28호, pp. 89-96
  3. 한건연, 백창현, 박경옥(2004a) SU/PG 기법에 의한 하천흐름의 유한요소해석-I. 이론 및 수치안정성 해석, 대한토목학회논문집, 대한토목학회, 제24권 제38호, pp. 183-192
  4. 한건연, 백창현, 박경옥(2004b) SU/PG 기법에 의한 하천흐름의 유한요소해석-II. 적용. 대한토목학회논문집, 대한토목학회, 제24권 제38호, pp. 193-199
  5. 한건연, 이종태, 박재홍(1996) 개수로내의 점변 및 급변 부정류에 대한 유한요소해석: I. 이론 및 수치안정성 해석. 한국수자원학회논문집, 한국수자원학회, 제29권 제4호, pp. 167-178
  6. Akanbi, A.A. (1986) Hydrodynamic modeling of two-dimensional overland flow. Ph.D. dissertation, Department of Civil Engineering, University of Michigan, Ann Arbor, MI
  7. Akanbi, A.A. and Katopodes, N.D. (1988) Model for flood propagation on initially dry land. Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 7, pp. 689-706 https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(689)
  8. Beam, R.M. and Warming, R.F. (1976) An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics, Vol. 22, pp. 87-110 https://doi.org/10.1016/0021-9991(76)90110-8
  9. Brooks, A.N. and Hughes, T.J.R. (1982) Streamline-Upwind/ Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, Vol. 32, pp. 199-259 https://doi.org/10.1016/0045-7825(82)90071-8
  10. Christie, I., Griffiths, D.F., Mitchell, A.R., and Zienkiewicz, O.C. (1976) Finite element methods for second order differential equations with significant first derivatives. International Journal of Numerical Methods in Engineering, Vol. 10, pp. 1389-1396 https://doi.org/10.1002/nme.1620100617
  11. De Vriend, H.J. (1976) A mathematical model of steady flow in curved shallow channels. Report No. 76-1, Communications on Hydraulics, Department of Civil Engineering, Delft University of Technology
  12. Fennema, R.J. and Chaudhry, M.H. (1989) Implicit methods for two-dimensional unsteady free-surface flows. Journal of Hydraulic Research, IAHR, Vol. 27, No. 3, pp. 321-332 https://doi.org/10.1080/00221688909499167
  13. Fennema, R.J. and Chaudhry, M.H. (1990) Explicit methods for 2-D transient free-surface flows. Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 8, pp. 1013-1034 https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(1013)
  14. Ghamry, H.K.. and Steffler, P.M. (2005) Two-dimensional depth-averaged modeling of flow in curved open channels. Journal of Hydraulic Research, IAHR, Vol. 43, No. 1, pp. 44-55 https://doi.org/10.1080/00221680509500110
  15. Ghanem, A.H.M. (1995). Two-dimensional finite element modeling of flow in aquatic habitats. Ph.D. dissertation, University of Alberta, Edmonton, Alberta
  16. Heinrich, J.C., Hyuakorn, PS., Zienkiewicz, O.C, and Mitchell, A.R. (1977) An 'upwind' finite element scheme for two-dimensional convective transport equation. International Journal of Numerical Methods in Engineering, Vol. 11, pp. 134-143
  17. Hicks, F.E. and Steffler, P.M. (1992) Characteristic Dissipative Galerkin scheme for open-channel flow. Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 2, pp. 337-352 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
  18. Hicks, F.E. and Steffler, P.M. (1994) Comparison of finite element methods for the St. Venant equations. International Journal of Numerical Methods in Fluids, Vol. 20, pp. 99-113 https://doi.org/10.1002/fld.1650200202
  19. Hoger, A. and Carlson, D.E. (1984) Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Quarterly of Applied Mathematics, Vol. 42, No. 1, pp. 113-117 https://doi.org/10.1090/qam/736511
  20. Hughes, T.J.R. and Mallet, M. (1986a) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Computer Methods in Applied Mechanics and Engineering, Vol. 58, No. 3, pp. 305-328 https://doi.org/10.1016/0045-7825(86)90152-0
  21. Hughes, T.J.R. and Mallet, M. (1986b) A new finite element formulation for computational fluid dynamics: IV A discontinuity-capturing operator for multidimensional advective-diffusive systems. Computer Methods in Applied Mechanics and Engineering, Vol. 58, No. 3, pp. 329-336 https://doi.org/10.1016/0045-7825(86)90153-2
  22. Ippen, A.T. and Dawson, J.H. (1951) Design of channel contractions. Transactions of the American Society of Civil Engineers, Vol. 116, pp. 326-346
  23. Jin, Y.C. and Steffler, P.M. (1993) Predicting flow in curved open channels by depth-averaged method. Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 1, pp. 109-124 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(109)
  24. Katopodes, N.D. (1984a) A Dissipative galerkin scheme for open-channel flow. Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 4, pp. 450-466 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(450)
  25. Katopodes, N.D. (1984b) Two-dimensional surges and shocks in open channels. Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 6, pp. 794-812 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(794)
  26. Kuipers, J. and Vreugdenhill, C.B. (1973) Calculations of two-dimensional horizontal flow. Rep. S163, Part I, Delft Hydraulics Lab., Delft, The Netherlands
  27. Lee, J.K. and Froehlich, D.C. (1986) Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane. U.S. Geological Survey, Circular 1009
  28. Lien, H.C., Hsieh, T.Y., Yang, J.C., and Yeh, K.C. (1999) Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 10, pp. 1097-1108 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)
  29. Molls, T. and Chaudhry, M.H. (1995) Depth-averaged open-channel flow model. Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 6, pp. 453-465 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453)
  30. Ponce, V.M. and Yabusaki, S.B. (1981) Modeling circulation in depth-averaged flow. Journal of the Hydraulics Division, ASCE, Vol. 107, No. HY11, pp. 1501-1518
  31. Rozovskii, I.L. (1957). Flow of water in bends of open channels. Academy of Science of Ukrainian SSR, Russia
  32. Tingsanchali, T. and Maheswaran, S. (1990) 2-D depth-averaged flow computation near groyne. Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 1, pp. 71-86 https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(71)
  33. Vreugdenhill, C.B. and Wijbenga, J. (1982) Computation of flow patterns in rivers. Journal of the Hydraulics Division, ASCE, Vol. 108, No. HY11, pp. 1296-1310
  34. Wang, S.S. and Adeff, S.E. (1987) A depth integrated model for solving Navier-Stokes equations using Dissipative Galerkin scheme. Turbulence Measurements and Flow Modeling, C.J. Chen, L.D. Chen and F.M. Jr. Hollly, eds. pp. 311-321
  35. Younus, M. and Chaudhry, M.H. (1994) A depth-averaged-turbulence model for the computation of free-surface flow. Journal of Hydraulic Research, IAHR, Vol. 32, No. 3, pp.415-444 https://doi.org/10.1080/00221689409498744