• Title/Summary/Keyword: CD5 antigen

Search Result 102, Processing Time 0.027 seconds

Relationship between Cancer Stem Cell Marker CD133 and Cancer Germline Antigen Genes in NCI-H292 Lung Cancer Cells

  • Ko, Taek Yong;Kim, Jong In;Lee, Sang Ho
    • Journal of Chest Surgery
    • /
    • v.53 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • Background: Previous studies have shown that lung cancer stem cells express CD133 and that certain cancer stem cells express cancer germline antigens (CGAs). The transcriptional regulation of CD133 is complicated and poorly understood. We investigated CD133 and CGA expression in a non-small cell lung cancer cell line. Methods: The expression levels of CD133 and CGAs (MAGE-6, GAGE, SSX, and TRAG-3) were measured in an NCI-H292 lung cancer cell line. The methylation status of the CD133 gene promoter region was analyzed. The expression levels and promoter methylation statuses of CD133 and CGAs were confirmed by treatment with the demethylating agent 5-aza-2'-deoxycytidine (ADC). Results: After treatment with ADC, CD133 expression was no longer detected. MAGE-6 and TRAG-3 were detected before ADC treatment, while GAGE and SSX were not detected. ADC treatment upregulated MAGE-6 and TRAG-3 expression, while GAGE expression was still undetected after treatment, and only weak SSX expression was observed. GAGE expression was not correlated with expression of CD133, while the levels of expression of MAGE-6, TRAG-3, and SSX were inversely correlated with CD133 expression. Conclusion: These results showed that CD133 expression can be regulated by methylation. Thus, the demethylation of the CD133 promoter may compromise the treatment of lung cancer by inactivating cancer stem cells and/or activating CGAs.

Opposite Roles of B7.1 and CD28 Costimulatory Molecules for Protective Immunity against HSV-2 Challenge in a gD DNA Vaccine Model

  • Weiner, David B.;Sin, Jeong-Im
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.68-77
    • /
    • 2005
  • Background: Costimulation is a critical process in Ag-specific immune responses. Both B7.1 and CD28 molecules have been reported to stimulate T cell responses during antigen presentation. Therefore, we tested whether Ag-specific immune responses as well as protective immunity are influenced by coinjecting with B7.1 and CD28 cDNAs in a mouse HSV-2 challenge model system. Methods: ELISA was used to detect levels of antibodies, cytokines and chemokines while thymidine incorporation assay was used to evaluate T cell proliferation levels. Results: Ag-specific antibody responses were enhanced by CD28 coinjection but not by B7.1 coinjection. Furthermore, CD28 coinjection increased IgG1 production to a significant level, as compared to pgD+pcDNA3, suggesting that CD28 drives Th2 type responses. In contrast, B7.1 coinjection showed the opposite, suggesting a Th1 bias. B7.1 coinjection also enhanced Ag-specific Th cell proliferative responses as well as production of Th1 type cytokines and chemokines significantly higher than pgD+pcDNA3. However, CD28 coinjection decreased Ag-specific Th cell proliferative responses as well as production of Th1 types of cytokines and chemokine significantly lower than pgD+pcDNA3. Only MCP-1 production was enhanced by CD28. B7.1 coimmunized animals exhibited an enhanced survival rate as well as decreased herpetic lesion formation, as compared to pgD+pcDNA3. In contrast, CD28 vaccinated animals exhibited decreased survival from lethal challenge. Conclusion: This study shows that B7.1 enhances protective Th1 type cellular immunity against HSV-2 challenge while CD28 drives a more detrimental Th2 type immunity against HSV-2 challenge, supporting an opposite role of B7.1 and CD28 in Ag-specific immune responses to a Th1 vs Th2 type.

Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene

  • Choi, So-Young;Suh, You-Suk;Cho, Jae-Ho;Jin, Hyun-Tak;Chang, Jun;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.169-178
    • /
    • 2009
  • DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.

Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma

  • Nakajima, Hiroshi;Hirose, Koichi
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • Asthma is characterized by chronic airway inflammation with intense eosinophil and lymphocyte infiltration, mucus hyperproduction, and airway hyperresponsiveness. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. In addition, we and others have recently shown that IL-17-producing $CD4^+$ T cells (Th17 cells) and IL-23, an IL-12-related cytokine that is essential for survival and functional maturation of Th17 cells, are involved in antigen-induced airway inflammation. In this review, our current understanding of the roles of IL-23 and Th17 cells in the pathogenesis of allergic airway inflammation will be summarized.

Cytotoxicity of Anti-CD4 Antibody Activated $CD4^+$ T-Lymphocytes against Herpesvirus-Infected Target Cells is Dependent on $p56^{lck}$ and $p59^{fyn}$ Protein Tyrosine Kinase Activity

  • Choi, Sang-Hoon;Jang, Yong-Suk;Oh, Chan-Ho
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.355-363
    • /
    • 1998
  • MHC unrestricted, antigen nonspecific killing by $CD4^+$ T-cells against virally-infected target cells was induced following cross-linking of CD4 molecules. The cytotoxicity of antibody-activated $CD4^+$ T-cells was abolished by genistein (4',5,7-trihydroxyisoflavone), a protein tyrosine kinase (PTK) inhibitor, but not by H-7, a protein kinase C (PKC) inhibitor. Genisteintreated human or bovine peripheral blood $CD4^+$ T-cells lacked PTK activity and failed to kill virally-infected target cells even after cross-linking of CD4 molecules. The cross-linking of CD4 molecules did not induce effector cell proliferation or the transcription of TNF ${\beta}$. TNF ${\beta}$ synthesis was up-regulated by incubating antibody activated effector cells with bovine herpesvirus type 1 (BHV-1) infected D17 target cells. Anti-TNF ${\beta}$ antibody partially abrogated direct effector cell-mediated antiviral cytotoxicity. On the other hand, this antibody effectively neutralized antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on effector and target cell ratio. These findings have importance to define the mechanisms of how CD4 cytotoxic cells control viral infection.

  • PDF

IMMUNOREGULATORY EFFECTS OF A MONOCLONAL ANTIBODY TO HUMAN 4-1 BB MOLECULE ON ALLOANTIGEN-MEDIATED IMMUNE RESPONSES.

  • Kim, Joong-Gon;Lee, Soo-Hyun;Lee, Jae-Woo;B.S. Kwon;Kang, Chang-Yuil
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.82-82
    • /
    • 1995
  • 4-lBB molecule is expressed on the surface of activated CD4$\^$+/ and CD8$\^$+/ T cells. We generated a panel of anti-4-1 B5 murine mAbs using a fusion protein consisting of the extracellular domain of human 4-1 BB fused to Glutathione S-transferase. The binding activity against cell surface 4-1 BB molecule was assessed by flow cytometry analysis. These studies showed that several anti-4-1 BB mAbs bound to 10-30% of CD4$\^$+/ and CD8$\^$+/T cells in PHA or Con A stimulated PBLs, although these mAbs interacted with only, l-2% of CD4$\^$+/ and CD8$\^$+/ T cells in normal PBLs, indicating the specificity of mAbs to the 4-l BB molecule on activated CD4$\^$+/ and CD8$\^$+/ T cells. Next, we examined the effect of an anti-4-l BB mAb (4B4-1-1) on allogeneic mixed lymphocyte reactions (MLRs). The data indicated that the antibody significantly inhibited the proliferative response at higher concentrations. When tested with several T cell mitogens, the antibody had no stimulatory or inhibitory effects on the mitogen-mediated T cell proliferation. These data suggest that 4-1 BB molecule may play a role in the regulation of antigen-mediated immune response.

  • PDF

CD40 Co-stimulation Inhibits Sustained BCR-induced $Ca^{2+}$ Signaling in Response to Long-term Antigenic Stimulation of Immature B Cells

  • Nguyen, Yen Hoang;Lee, Ki-Young;Kim, Tae-Jin;Kim, Sung-Joon;Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.179-187
    • /
    • 2011
  • Regulation of B cell receptor (BCR)-induced $Ca^{2+}$ signaling by CD40 co-stimulation was compared in long-term BCR-stimulated immature (WEHI-231) and mature (Bal-17) B cells. In response to long-term pre-stimulation of immature WEHI-231 cells to ${\alpha}$-IgM antibody (0.5~48 hr), the initial transient decrease in BCR-induced $[Ca^{2+}]_i$ was followed by spontaneous recovery to control level within 24 hr. The recovery of $Ca^{2+}$ signaling in WEHI-231 cells was not due to restoration of internalized receptor but instead to an increase in the levels of $PLC{\gamma}2$ and $IP_3R-3$. CD40 co-stimulation of WEHI-231 cells prevented BCR-induced cell cycle arrest and apoptosis, and it strongly inhibited the recovery of BCR-induced $Ca^{2+}$ signaling. CD40 co-stimulation also enhanced BCR internalization and reduced expression of $PLC{\gamma}2$ and $IP_3R-3$. Pre-treatment of WEHI-231 cells with the antioxidant N-acetyl-L-cysteine (NAC) strongly inhibited CD40-mediated prevention of the recovery of $Ca^{2+}$ signaling. In contrast to immature WEHI-231 cells, identical long-term ${\alpha}$-IgM pre-stimulation of mature Bal-17 cells abolished the increase in BCR-induced $[Ca^{2+}]_i$, regardless of CD40 co-stimulation. These results suggest that CD40-mediated signaling prevents antigen-induced cell cycle arrest and apoptosis of immature B cells through inhibition of sustained BCR-induced $Ca^{2+}$ signaling.

Protective Effects on A2Kb Transgenic Mice That Were Immunized with Hepatitis B Virus X Antigen Peptides by the Activation of CD8+ T Cells; XEP-3 Specific CTL Responses in the in vitro Culture (B형 간염 바이러스 X 항원을 면역한 A2Kb Transgenic Mice에서 CD8+ T Cell의 활성화에 의한 X 항원 표현 재조합 Vaccinia Virus에 대한 방어 효과; in vitro 배양을 통한 XEP-3 특이적인 CTL의 반응)

  • Hwang, Yu Kyeong;Kim, Hyung-Il;Kim, Nam Kyung;Park, Jung Min;Cheong, Hong Seok
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Background: Viral antigens presented on the cell surface in association with MHC class I molecules are recognized by CD8+ T cells. MHC restricted peptides are important in eliciting cellular immune responses. As peptide antigens have a weak immunigenicity, pH-sensitive liposomes were used for peptide delivery to induce effective cytotoxic T lymphocyte (CTL) responses. In the previous study, as the HBx peptides could induce specific CTLs in vitro, we tested whether the HLA-A2/$K^b$ transgenic mice that were immunized by HBx-derived peptides could be protected from a viral challenge. Methods: HBx-peptides encapsulated by pH-sensitive liposomes were prepared. $A2K^b$ transgenic mice were immunized i.m. on days one and seven with the indicated concentrations of liposome-encapsulated peptides. Three weeks later, mice were infected with $1{\times}10^7pfu$/head of recombinant vaccinia virus (rVV)-HBx via i.p. administration. The ovaries were extracted from the mice, and the presence of rVV-HBx in the ovaries was analyzed using human TK-143B cells. IFN-${\gamma}$ secretion by these cells was directly assessed using a peptide-pulsed target cell stimulation assay with either peptide-pulsed antigen presenting cells (APCs), concanavalin A ($2{\mu}g/ml$), or a vehicle. To generate peptide-specific CTLs, splenocytes obtained from the immunized mice were stimulated with $20{\mu}g/ml$ of each peptide and restimulated with peptide-pulsed APC four times. The cytotoxic activity of the CTLs was assessed by standard $^{51}Cr$-release assay and intracellular IFN-${\gamma}$ assay. Results: Immunization of these peptides as a mixture in pH-sensitive liposomes to transgenic mice induced a good protective effect from a viral challenge by inducing the peptide-specific CD8+ T cells. Mice immunized with $50{\mu}g/head$ were much better protected against viral challenge compared to those immunized with $5{\mu}g$/head, whereas the mice immunized with empty liposomes were not protected at all. After in vitro CTL culture by peptide stimulation, however, specific cytotoxicity was much higher in the CTLs from mice immunized with $5{\mu}g/head$ than $50{\mu}g/head$ group. Increase of the number of cells that intracellular IFN-${\gamma}$ secreting cell among CD8+ T cells showed similar result. Conclusion: Mice immunized with XEPs within pH-sensitive liposome were protected against viral challenge. The protective effect depended on the amount of antigen used during immunization. XEP-3-specific CTLs could be induced by peptide stimulation in vitro from splenocytes obtained from immunized mice. The cytotoxic effect of CTLs was measured by $^{51}Cr$-release assay and the percentage of accumulated intracellular IFN-${\gamma}$ secreting cells after in vitro restimulation was measured by flow cytometric analysis. The result of $^{51}Cr$-release cytotoxicity test was well correlated with that of the flow cytometric analysis. Viral protection was effective in immunized group of $50{\mu}g/head$, while in the in vitro restimulation, it showed more spectific response in $5{\mu}g$/head group.

Association study analysis of CD9 as candidate gene for Duroc pig sperm motility and kinematic characteristics (두록 정자 운동학적 특성과 후보유전자 CD9 유전자와의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Sungk-won;Sa, Soo-Jin;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.281-285
    • /
    • 2016
  • Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as a candidate gene to investigate Duroc boar semen motility and kinematic characteristics. This study was performed to investigatetheir association with semen motility and kinematic characteristics. DNA samples from 96 Duroc pigs with records of sperm motility and kinematic characteristics [Total motile spermatozoa (MOT, $82.27{\pm}5.58$), Curvilinear velocity(VCL, $68.37{\pm}14.58$), Straight-line velocity(VSL, $29.06{\pm}6.58$), the ratio between VSL and VCL(LIN, $47.36{\pm}8.42$), Amplitude of Lateral Head displacement(ALH, $2.88{\pm}0.70$)] were used in present study. A single nucleotide polymorphism (g.358A>T) in intron 6 was associated with MOT, VCL, VAP and ALH in Duroc population (p<0.05). Therefore, we suggest that the porcine CD9 may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not clear yet. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts, and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.

DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2

  • Kim, Youngmi;Yeon, Minjeong;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.322-330
    • /
    • 2017
  • This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anti-cancer drug-resistant $Malme3M^R$ cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and $Malme3M^R$ cells. Furthermore, the self-renewal activity and the tumorigenic potential of $Malme3M^R$-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.