• Title/Summary/Keyword: CD structure

Search Result 782, Processing Time 0.032 seconds

A Study on the Characteristics of High Energy Nitrogen ion Implanted CdS Thin Films (고에너지 질소 이온 주입된 CdS 박막 특성에 관한 연구)

  • 이재형;홍석주;양계준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.712-718
    • /
    • 2003
  • The effects of nitrogen ion implantation on vacuum evaporated cadmium sulphide (CdS) thin films were investigated by X-ray diffraction, optical transmittance spectra, and Raman scattering studies. The as-deposited CdS films have a hexagonal structure with preferential (0 0 2) orientation. Formation of Cd metallic clusters was observed in ion implanted films from the XRD patterns. The band gap of N+ implanted films decreased, whereas the optical absorption coefficient values increased with the increase of implantation dose. The Raman peak position appeared at 299 cm-1 and the FWHM increased with the ion dose. A decrease in the area of Raman peak of CdS Al(LO) mode is seen on implantation.

The Effect of Cd-Dopping on Sintering behavior of PNN-PT-PZ Ceramics (PNN-PZ-PT 세라믹스의 소결 거동에 미치는 Cd-doping 효과)

  • 조정호;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.217-220
    • /
    • 1995
  • By substituting Cd$\^$2+/ into both A-site and B-site in PNN-PZ-PT ternary perovskite material, it is possible to determine the effects of the substitution site of Cd$\^$2+/ on sintering behavior. Sintering was performed in the temperature range from 1000$^{\circ}C$ to 1300$^{\circ}C$. The substitution site of Cd$\^$2+/ is identified by XPS spectra. Although Cd$\^$2+/ is substituted into both A-site and B-site in PNN-PZ-PT, Cd$\^$2+/ prefers A-site to B-site. The density is influenced by substitution site of Cd$\^$2+/. If Cd$\^$2+/ replaces Pv$\^$2+/, weight gain is observed during sinterig process. On the contrary, if Cd$\^$2+/ replaces Ni$\^$2+/, weight loss is promoted during sintering. From these weight changes, it is believed that Cd$\^$2+/ changes the bonding strength between B-site cation and oxygen of octahedron in perovskite structure. The changes of lattice parameters as a function of Cd$\^$2+/ content were consistent with those of the bonding strength. The densities of A-site-doped compositions were higher than those of B-site-doped composition.

  • PDF

Preparation and crystal structure of azido bridged one-dimensional polymeric cadmium(II) complex, [Cd(N3)2(2-ethylimidazole)2]

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.391-395
    • /
    • 2005
  • The title complex, $[Cd(N_3)_2(2-ethylimidazole)_2]$, I, has been prepared and characterized by X-ray single crystallography. The complex I crystallizes in the monoclinic system, Cc space group with a = 16.200(3), b = 12.926(3), $c=7.007(1){\AA}$, ${\beta}=102.29(3)^{\circ}$, $V=1433.7(5){\AA}^3$, Z = 4, $R_1=0.0239$ and ${\omega}R_2=0.0604$ for 1874 independent reflections. Cd(II) atom has a slightly distorted octahedral coordination geometry, with four end-on (${\mu}-1$,1) bridging azido ligands and two 2-ethylimidazole ligands bonding through nitrogen atom. The central cadmium(II) atoms are run in parallel to the c-axis and are doubly bridged with neighboring cadmium(II) atoms by the end-on (${\mu}-1$,1) bridging azido ligands. Thus, this complex has a one-dimensional zigzag chain structure in which the 2-ethylimidazole is in the cis conformation.

The effect of substrate temperature on the Characteristics of CdTe thin film (기판온도에 따른 CdTe박막 특성)

  • Lee, Jae-Hyoung;Song, Woo-Chang;Park, Yong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1178-1180
    • /
    • 1995
  • In this paper, structual, optical and electrical properties of CdTe thin films prepared by electron beam evaporation method were studied. The crystal structure of CdTe films deposited at substrate temperature of $100{\sim}400^{\circ}C$ was zincblend type with preferential orientation of the (111)plane parallel to the substrate. The result of optical absoption and transmittance show that solar radiation with energy larger than band gap is almost completely absorbed within an about $2{\mu}m$ thickness of the evaporated CdTe layer and optical band gap of the CdTe film was larger with increasing substrate temperature. The resistivity of CdTe films deposited on the glass substrate was about $10^5{\sim}10^7{\Omega}cm$.

  • PDF

In-line Critical Dimension Measurement System Development of LCD Pattern Proposed by Newly Developed Edge Detection Algorithm

  • Park, Sung-Hoon;Lee, Jeong-Ho;Pahk, Heui-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.392-398
    • /
    • 2013
  • As the essential techniques for the CD (Critical Dimension) measurement of the LCD pattern, there are various modules such as an optics design, auto-focus [1-4], and precise edge detection. Since the operation of image enhancement to improve the CD measurement repeatability, a ring type of the reflected lighting optics is devised. It has a simpler structure than the transmission light optics, but it delivers the same output. The edge detection is the most essential function of the CD measurements. The CD measurement is a vital inspection for LCDs [5-6] and semiconductors [7-8] to improve the production yield rate, there are numbers of techniques to measure the CD. So in this study, a new subpixel algorithm is developed through facet modeling, which complements the previous sub-pixel edge detection algorithm. Currently this CD measurement system is being used in LCD manufacturing systems for repeatability of less than 30 nm.

Electrical and optical properties of CdS films propared by vacuum evaporation (진공증착법으로 제조한 CdS 박막의 전기적 및 광학적 성질)

  • 김동섭;김선재;박정우;임호빈
    • Electrical & Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.71-80
    • /
    • 1992
  • CdS박막을 5*$10^{-7}$Torr의 초기 진공하에서 CdS source 온도를 800~1100.deg.C로 하고 기판 온도를 100~200.deg.C로 하여 corning 7059 glass 기판위에 0.6~1.2.mu.m의 두께로 진공증착 방법으로 제조하였다. CdS soruce 온도와 기판온도가 증착된 CdS 박막의 미세구조와 결정구조 및 전기적, 광학적 성질에 미치는 영향을 알아 보았다. 기판을 가열하지 않은 경우는 source 온도가 증가할수록 전기비저항과 광투과도가 낮게 나타났다. Source 온도를 1100.deg.C로 고정하였을 경우 기판의 온도에 따라 전기비저항값과 광투과도값은 증가하였으며 optical band gap도 증가하였다. Soruce 온도가 1100.deg.C이고 기판온도가 190.deg.C일때 전기비저항값은 2*$10^{6}$ohm-cm였고 광투과도는 band gap 이상의 파장에서 80% 이상의 값을 가졌다. 증착된 CdS박막의 결정구조는 모두 hexagonal structure를 가지며 source 온도가 낮을수록 기판온도가 높을수록 C축으로 방향성있게 성장하였다.

  • PDF

Effects of Cd substitution on the superconducting properties of (Pb0.5Cu0.5-xCdx)Sr2(Ca0.7Y0.3)Cu2Oz

  • Lee, Ho Keun;Kim, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2018
  • To understand the effects of Cd substitution for Cu, $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ (x = 0 ~ 0.5) compounds were synthesized and the structural and superconducting properties of the compounds were characterized. Resistivity data revealed that superconducting transition temperature rises initially up to x = 0.25 and then decreases as the Cd doping content increases. Room-temperature thermoelectric power decreases at first up to x = 0.25 and then increases with higher Cd doping content, indicating that the change in $T_c$ is mainly caused by the change in the hole concentration on the superconducting planes by the Cd doping. The non-monotonic dependence of the lattice parameters and the transition temperature with Cd doping content is discussed in connection with the possible formation of $Pb^{+2}$ ions and the removal of excess oxygen caused by Cd substitution in the charge reservoir layer. A correlation between transition temperature and c/a lattice parameter ratio was observed for the $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ system.

Electroluminescence of CdTe nanoparticles (CdTe 나노입자를 이용한 EL구조 및 특성)

  • Kim, Jin-Hyong;Cho, Kyoung-Ah;Kim, Hyun-Suk;Lee, Joon-Woo;Park, Byoung-Jun;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.60-62
    • /
    • 2004
  • CdTe nanoparticles were synthesized in aqueous solution by colloidal method. The absorption and photoluminescence(PL) spectrum of the synthesized CdTe nanoparticles revealed the strong exitonic peak in the visible region. Electroluminescence of CdTe nanoparticles were observed in the structure of Al/CdTe/PVK/ITO and Al/CdTe/PEDOT/ITO that were fabricated by spin coating of polyvinylcarvazole(PVK), poly(3,4-ethylenedioxythiophene(PEDOT) and CdTe nanoparticles. The turn-on voltages of Al/CdTe/PVK/ITO and Al/CdTe/PEDOT/ITO for electroluminescence were 5V and 6V, respectively. We identified that the reduction of turn-on voltage resulted from the increase of hole injection into the hole transport layer due to lower ionization energy of PEDOT.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

HgCdTe Junction Characteristics after the Junction Annealing Process (열처리 조건에 따른 HgCdTe의 접합 특성)

  • Jeong, Hi-Chan;Kim, Kwan;Lee, Hee-Chul;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.89-95
    • /
    • 1995
  • The structure of boron ion-implanted pn junctio in the vacancy-doped p-type HgCdTe was investigated with the differential Hall measurement. The as-implanted junction showed the electron concentration as high as 1${\times}10^{18}/cm^{3}$ and the junction depth of 0.6.mu.m. When the HgCdTe junction was heated in oven, the electron concentration near the junction decreased and the junction depth increased as the annealing temperature and time increased. The junction structure after the thermal annealing was n$^{+}$/n$^{-}$/p. For the 200.deg. C 20min annealed sample, the electron mobility was 10$^{4}cm^{2}/V{\cdot}$s near the surface(n$^{+}$), and was larger thatn 10$^{5}cm^{2}/V{\cdot}$s near the junction(n$^{+}$). The junction formation mechanism is conjectured as follows. When HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms near the surface. The displaced Hg vacancies diffuse in easily by the thernal treatment and a fill the Hg vacancies in the p-HgCdTe substrate. With the Hg vacancies filled completely, the GfCdTe substrate becomes n-type because of the residual n-type impurity which was added during the wafer growing. Therefore, the n$^{+}$/n$^{-}$/p regions are formed by crystal defects, residual impurities, and Hg vacancies, respectively.

  • PDF