Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2011.06a
/
pp.159-160
/
2011
기존의 VTS 교육훈련시설은 레이더 영상의 전시에만 의존하여 충실한 교육효과를 거두기 어려운 현실이었다. 최근에 선박 조종시뮬레이터에서 사용되던 3차원 가상영상을 VTS 관제운용에 접목하여 악천 후 등으로 인한 CCTV 활용 및 견시가 불가능한 때에도 선박의 현재 항해 상태를 직관적으로 파악할 수 있는 시스템이 개발되었다. 본 연구에서는 3차원 가상영상의 제공이 관제사의 효율적이고 신속한 의사결정을 어떻게 지원할 수 있는지를 살펴본 뒤, 기존 VTS 훈련 장비에 3차원 가상영상을 접목하여 보다 충실한 교육훈련효과를 거둘 수 있는 방안을 찾아보았다.
Jang, Hyeon Dong;Choi, Hye Sun;Lee, Jeong Kyu;Park, Jong Hyuk
Annual Conference of KIPS
/
2015.04a
/
pp.218-220
/
2015
블랙박스는 많은 운전자들이 사고 발생 시 사고 경위를 파악하는데 널리 쓰이고 있다. 하지만 블랙박스의 시야각과 용량의 한계로 인해 사고 경위 파악에 어려움을 겪는다. 본 논문에서는 이런 문제를 해결하기 위해 차량 간 블랙박스 영상을 공유하는 시스템을 소개하고자 한다. 이 시스템을 통해 사고 차량은 다각도에서의 사고 영상을 얻을 수 있어 사고 경위 분석에 도움이 된다. 또한 이 시스템을 확장하여 차량뿐만 아니라 주변 영상 촬영기기 (CCTV 등)와도 영상을 공유할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.9-12
/
2019
지난 수 년 동안 계속해서 일반 실상 카메라를 이용한 영상분석기술에 대한 연구가 활발히 진행되고 있다. 최근에는 딥러닝 기술을 적용한 지능형 영상분석기술로 발전해 왔으며 국방기지방호, CCTV, 사용자 얼굴인식, 머신비전, 자동차, 드론 산업이 활성화되면서 많은 시너지를 효과를 일으키고 있다. 그러나 어두운 밤과 안개, 날씨, 연기 등 다양한 여건에서 따라서 카메라의 영상분석 정확성 감소와 오류가 수반될 수 있으며 일반적으로 딥러닝 기술을 활용하기 위해서는 고사양의 GPU를 필요로 하기 때문에 다른 추가적인 시스템이 요구된다. 이에 본 연구에서는 열적외선 영상의 객체 검출에 적용하기 위해 SSD(Single Shot MultiBox Detector) 기반의 경량적인 MobilNet 네트워크로 재구성하여, 모바일 기기 등 낮은 사양의 낮은 임베디드 시스템에서도 활용 할 수 있는 방법을 제안한다. 모의 실험결과 제안된 방식의 모델은 적외선 열화상 카메라에서 객체검출과 학습시간이 줄어든 것을 확인 할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.145-148
/
2022
준지도학습 기반의 동영상 이상행동감지는 구하기 어려운 프레임 단위 레이블이 필요하지 않아 더 많은 동영상을 학습에 활용 가능한 장점이 있어 관련 연구가 활발히 진행되고 있다. 최근 제안된 기법들은 주로 UCF-Crime 이라는 실제 CCTV 동영상 데이터셋을 활용하고 있는데, 본 데이터셋은 학습 영상과 테스트 영상에서 이상행동 클래스 별 분포도가 균등하지 않다. 본 연구에서는 해당 불균형으로 인해 학습 모델이 특정 행동 클래스에 과적합될 수 있음을 보이며, 이러한 불균형을 해결하기 위해 Class-Balanced Multiple Instance Learning Loss 를 제안한다. 이를 통해 기존에 특정 클래스에 편중되었던 모델이 이상행동 종류에 좀 더 균등한 성능을 낼 수 있음을 보여준다. 특히 단순히 클래스별 정확도가 제로섬(zero sum)으로 증감하는 것이 아니라 전체적인 이상행동 판별 정확도 또한 향상됨을 실험 결과를 통해 확인할 수 있다.
Park, Sang-Yeun;Shin, Hae-Sun;Park, Sung-Soon;Kim, Gyoung-Hun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.30-31
/
2020
일반적으로 CCTV 녹화기는 24시간 중단없이 다중 카메라로 부터 수신되는 Video, Audio, Meta 데이터를 파일형태로 저장한다. 그리고 다양한 IoT 센서들은 사건(event)이 발생되었을 때, 입력되는 데이터를 기록한다. 그런데 이 형태의 데이터를 통합하여 사용하는 서비스들에 대한 요구가 증대되고 있다. 그런데 영상데이터와 IoT센서 데이터를 분리해 저장하고 관리하는 기존의 방식으로는 사용 센서의 개수 등에 따라 물리적인 크기가 커지고 관리의 복잡성이 커지는 문제가 발생한다. 본 논문에서는 다중 카메라로부터 입력되는 동영상 데이터와 IoT 센서 데이터를 통합하여 저장하는 방안을 제시한다. 이러한 통합 데이터의 고속 입출력을 지원하기 위해, 본 연구에서는 자체 파일시스템을 개발하였고 저장되는 각각의 파일을 mp4 표준을 따르게 하여 호환성을 보장하도록 구현하였다. 그래서 동영상 파일 포맷으로 널리 사용되는 MP4 포맷에 IoT센서 데이터를 함께 저장함으로써 동영상과 IoT센서의 정보를 효율적으로 관리하고 검색의 편의성을 높일 수 있게 되었다.
Recently, it is very important to establish and predict a traffic policy for expanding social infra structure like road, because the number of cars is significantly increasing. In this paper, we propose and develop an automated system technology based on vision sensor (CCTV) which can provide an efficient information for the traffic policy establishment and expanding the social infra structure. First, the CCTV image is captured as an input of the developed system. With this image, we propose a scheme for extracting vehicles on the road and classifying small-type, large-type vehicles based on color, motion, and geometric features. Also, we develop a DB (database) system for supplying a whole information of traffic for a specified period. Based on the proposed system, we verify 90.1% of recognition ratio in real-time traffic monitering environment.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.12
/
pp.2355-2362
/
2016
Seg fog removal is an important issue concerned by both computer vision and image processing. Sea fog or haze removal is widely used in lots of fields, such as automatic control system, CCTV, and image recognition. Color image dehazing techniques have been extensively studied, and expecially the dark channel prior(DCP) technique has been widely used. This paper propose a fast and efficient image prior - dark channel prior to remove seg-fog from a single digital image based on the GPU. We implement the basic parallel program and then optimize it to obtain performance acceleration with more than 250 times. While paralleling and the optimizing the algorithm, we improve some parts of the original serial program or basic parallel program according to the characteristics of several steps. The proposed GPU programming algorithm and implementation results may be used with advantages as pre-processing in many systems, such as safe navigation for ship, topographical survey, intelligent vehicles, etc.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.675-678
/
2018
Since the face has a unique property to identify human, the face recognition is actively used in a security area and an authentication area such as access control, criminal search, and CCTV. The frontal face image has the most face information. Therefore, it is necessary to acquire the front face image as much as possible for face recognition. In this study, the face region is detected using the Adaboost algorithm using Haar-like feature and tracks it using the mean-shifting algorithm. Then, the feature points of the facial elements such as the eyes and the mouth are extracted from the face region, and the ratio of the two eyes and degree of rotation of the face is calculated using their geographical information, and the approximate front face image is presented in real time.
The Journal of Korean Institute of Communications and Information Sciences
/
v.37
no.2A
/
pp.105-112
/
2012
Face detection at a distance faces is very challenging since images are often degraded by blurring and noise as well as low resolution. This paper proposes an improved face detection method with AdaBoost filtering and sequential testing stages with color and shape information. The conventional AdaBoost filter detects face regions but often generates false alarms. The face detection method is improved by adopting sequential testing stages in order to remove false alarms. The testing stages comprise skin-color test and variable edge-mask filtering. The skin-color filtering is composed of two steps, which involve rectangular window regions and individual pixels to generate binary face clusters. The size of the variable edge-mask is determined by the ellipse which is estimated from the face cluster. The validation of the horizontal and vertical ratio of the mask is also investigated. In the experiments, the efficacy of the proposed algorithm is proved by images captured by a CCTV and a smart-phone
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.567-572
/
2019
In this paper, we propose an algorithm to perform convolution, pooling, and ReLU operations in CNN using binary image and binary kernel. It decomposes 256 gray-scale images into 8 bit planes and uses a binary kernel consisting of -1 and 1. The convolution operation of binary image and binary kernel is performed by addition and subtraction. Logically, it is a binary operation algorithm using the XNOR and comparator. ReLU and pooling operations are performed by using XNOR and OR logic operations, respectively. Through the experiments to verify the usefulness of the proposed algorithm, We confirm that the CNN operation can be performed by converting it to binary logic operation. It is an algorithm that can implement deep running even in a system with weak computing power. It can be applied to a variety of embedded systems such as smart phones, intelligent CCTV, IoT system, and autonomous car.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.