• 제목/요약/키워드: CCC-r 관리도

검색결과 4건 처리시간 0.019초

추정된 모수를 사용한 CCC-r 관리도에서 관리상태의 성능 (The in-control performance of the CCC-r chart with estimated parameters)

  • 김재연;김민지;이재헌
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.485-495
    • /
    • 2018
  • CCC-r 관리도는 고품질공정에서 공정불량률을 관리하는 경우 매우 효율적이라고 알려져 있다. 이 관리도를 사용할 때 관리상태의 공정모수는 일반적으로 알려져 있지 않기 때문에 제1국면의 표본을 추출하여 이를 추정해야 한다. 제2국면에서 관리도의 성능은 제1국면에서 추정한 모수와 관리한계에 영향을 받기 때문에, 추정 오차의 영향을 살펴보는 것은 중요하다. 이 논문에서는 일반적으로 많이 사용하는 평균런길이의 평균(average of average run length) 이외에 평균런길이의 표준편차(standard deviation of average run length)를 사용하여 CCC-r 관리도의 관리상태의 성능을 평가하였다. 그 결과 CCC-r 관리도에서 안정적인 관리상태의 성능을 유지하기 위해서는 이전에 권장하던 제1국면의 표본 크기보다 훨씬 더 큰 표본이 필요하다는 사실을 알 수 있었다.

붓스트랩에 기초하여 조정한 관리한계를 사용하는 CCC-r 관리도의 성능 (Performance of CCC-r charts with bootstrap adjusted control limits)

  • 김민지;이재헌
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.451-466
    • /
    • 2020
  • CCC-r 관리도는 불량률이 매우 낮은 고품질 공정을 관리하는 데 효율적이라고 알려져 있다. 대부분의 공정에서 공정 모수의 값은 알려져 있지 않기 때문에 제1국면에서 이를 추정해야 하는데, 표본의 크기가 충분히 크지 않은 경우 추정 오차가 발생하여 원하는 관리상태에서의 성능을 만족하지 못하는 경우가 발생한다. 뿐만 아니라 제1국면에서 추출하는 표본에 따른 산포로 인하여 관리상태일 때의 성능의 산포 또한 커지게 된다. 이러한 문제를 해결하기 위해 이 논문에서는 관리상태일 때 신호까지의 평균관측개수가 사전에 정한 확률로 목표하는 값보다 큰 값을 갖도록, 붓스트랩 알고리즘을 사용하여 CCC-r 관리도의 관리한계를 조정하는 절차를 제안하였다. 이때 고품질 공정에 적용하기 위하여 최대우도추정량 대신 베이즈추정량을 사용하여 불량률을 추정하였다. 다양한 상황에 대해 모의실험을 수행한 결과, 제안된 절차는 CCC-r 관리도의 관리상태 성능을 크게 향상시킴을 알 수 있었다.

DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용 (Analysis of Multivariate-GARCH via DCC Modelling)

  • 최성미;홍선영;최문선;박진아;백지선;황선영
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.995-1005
    • /
    • 2009
  • 금융 시계열 자료들 간의 상관계수는 자산의 배분, 위험관리 그리고 포트폴리오의 선택에 있어서 중요한 역할을 한다. 이러한 상관계수들을 모형화하기 위해 단변량-GARCH 모형을 다변량-GARCH 모형으로 확장시킨 MGARCH류 모형들에 대한 많은 연구들이 진행되고 있다. 특히, CCC 모형 (Bollerslev, 1990)과 DCC 모형 (Engle, 2002)은 다른 모형들에 비해 추정해야 할 모수의 수가 작다는 이점으로 인해 분석에 널리 쓰이고 있다. 본 논문에서는 국내 주가자료에 대해 CCC 모형과 DCC 모형을 적합시킨 후, 각 모형들에 대한 VaR(value at risk)와 사후검증(back-testing), 결합예측영역(joint prediction region) 등을 통하여 두 모형의 예측 능력을 비교해 보고자 한다.

Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석 (Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study)

  • 이대수;송성주
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.597-607
    • /
    • 2011
  • 금융자산에의 투자에서 리스크 관리의 중요성이 부각되면서 리스크를 측정할 수 있는 도구로서 Value at Risk (VaR)가 널리 각광을 받고 있다. Value at Risk는 주어진 신뢰수준에서 목표기간 동안 발생 가능한 최대손실로 정의되는데 몇 가지 한계점이 있지만 비교적 간단하게 계산되고 이해될 수 있다는 장점이 있어 리스크 측정 및 관리의 기본적인 측도로 이용되고 있다. 그러나 포트폴리오에 포함되는 자산의 숫자가 많아지는 경우 VaR을 계산하는 데에 필수적인 변동성 추정이 매우 어려워지게 된다. 이때 차원축소의 방법을 생각할 수 있는데, 전통적인 인자분석은 시계열자료에 적합한 방법이 아니기 때문에 직접 적용할 수 없고 자료의 자기상관성을 제거하는 방법이 선행되어야 한다. 본 논문에서는 인자분석의 확장 형태인 시계열인자분석을 활용하여 시계열자료의 차원축소과정을 간결하게 하는 방법을 제시하고, 시계열인자분석으로 차원을 축소할 때 기존의 방법을 사용하는 것과 어떠한 차이가 있는지를 실제 금융자료를 이용한 VaR의 사후검증을 통해 분석하였다.