• Title/Summary/Keyword: CCAAT/enhancer binding proteins

Search Result 64, Processing Time 0.031 seconds

Regulation of CCAAT/enhancer Binding Protein- alpha in Ultraviolet B Responses Involves the Cooperation of p53 and Glycogen Synthase Kinase-3 (자외선 B조사시 p53와 glycogen synthase kinase-3에 의한 CCAAT/enhancer binding protein alpha의 발현조절)

  • Yoon Kyung Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.3 s.50
    • /
    • pp.229-235
    • /
    • 2005
  • 태양광선,특히 자외선 B에 대한 환경적 노출은 편평세포암과 기저세포암을 포함하는 흑색선종 이외의 피부암과 크게 관련된다고 알려져 있다. 염기 류신 지퍼계 전사조절인자인 CChAT/enhancer binding protein-alpha는 표피 각질형성세포에서 다량으로 발현되었고, 각질형성세포의 증식을 억제하며 피부암 발생을 억제하는 유전자로서의 역할이 암시된 바 있다. 최근 자외선 B가 각질형성세포에서 p53에 의한 CCAAT/enhanrer binding protein-alpha의 발현을 강력하게 유도한다는 것이 보고되었다. 이러한 CCAAT/enhancer binding protein-alpha 단백질 발현의 유도는 세포 성장 억제 세포고사와 함께 일어났다. 이 연구는 glycogen synthase kinase-3 길항제가 자외선 B에 의한 CCAAT/enhancer binding protein-alpha 유도를 억제하며 변이 kinase-불활성 GSK의 강제 발현은 자외선 B가 CCAAT/enhancer binding protein-alpha전사조절부위 활성의 증가를 억제한다는 것을 보여주었다. 즉 자외선 B에 의한 CCAAT/enhancer binding protein-alpha의 유도가 p53과 활성 glycogen synthase kinase-3에 의한 것이라는 것을 증명하였다.

Molecular Cloning and mRNA Expression of the Hanwoo CAT/enhancer-binding Protein α(C/EBPα) Gene (한우 CCAAT/enhancer-binding protein α(C/EBPα) 유전자의 동정과 mRNA의 발현)

  • Jeoung, Y.H.;Lee, S.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.909-916
    • /
    • 2004
  • CCAAT/enhancer binding proteins(C/EBP) are a group of transcription factors expressed during preadipocyte differentiation. In the C/EBPs, C/EBPa plays an important role in lipid deposition and adipocyte differentiation. In this studies, we report the identification, characterization, and expression of a Hanwoo CIEBP$\alpha$ The Hanwoo C/EBP$\alpha$DNA includes a 1059 bp open reading frame encoding a protein of 353 amino acids. The CIEBPa amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The distribution of C/EBP$\alpha$ mRNA in various tissues of Hanwoo aged 12 months were investigated using Northern blotting analysis. The highest expression was detected in adipose tissue and more lower expression was detected in colon and lung. We also identified expression of C/EBPa mRNA in Hanwoo sirloin and adipose tissue aged 12, 26, and 30 months by real-time RT-PCR. The higest expression were detected at 26 months in the sirloin and at 12 and 26 months in the adipose tissue.

CCAAT/enhancer-binding protein beta (C/EBPβ) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts

  • Jo, Sungsin;Lee, Yun Young;Han, Jinil;Lee, Young Lim;Yoon, Subin;Lee, Jaehyun;Oh, Younseo;Han, Joong-Soo;Sung, Il-Hoon;Park, Ye-Soo;Kim, Tae-Hwan
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.391-396
    • /
    • 2019
  • Receptor activator of nuclear factor kappa B ligand (RANKL) expression in osteoblasts is regulated by 1,25-dihydroxyvitamin D3 (1,25D3). CCAAT/enhancer-binding protein beta ($C/EBP{\beta}$) has been proposed to function as a transcription factor and upregulate RANKL expression, but it is still uncertain how $C/EBP{\beta}$ is involved in 1,25D3-induced RANKL expression of osteoblasts. 1,25D3 stimulation increased the expression of RANKL and $C/EBP{\beta}$ genes in osteoblasts and enhanced phosphorylation and stability of these proteins. Moreover, induction of RANKL expression by 1,25D3 in osteoblasts was downregulated upon knockdown of $C/EBP{\beta}$. In contrast, $C/EBP{\beta}$ overexpression directly upregulated RANKL promoter activity and exhibited a synergistic effect on 1,25D3-induced RANKL expression. In particular, 1,25D3 treatment of osteoblasts increased $C/EBP{\beta}$ protein binding to the RANKL promoter. In conclusion, $C/EBP{\beta}$ is required for induction of RANKL by 1,25D3.

Jinan red ginseng extract inhibits triglyceride synthesis via the regulation of LXR-SCD expression in hepatoma cells

  • Hwang, Seung-mi;Park, Chung-berm
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.558-564
    • /
    • 2019
  • Hypertriglyceridemia is one of the metabolic syndrome that is often observed as a result of lipid abnormalities. It is associated with other lipids, metabolic disorders, cardiovascular disease and liver disease. Korean red ginseng is known to affect obesity, dyslipidemia, liver disease and liver function, but the mechanism of its effect is not clear. This study examined the beneficial effects of hypertriglyceridemia and the mechanism of action of Jinan red ginseng extract (JRG) in hepatoma cells. To measure the levels of triglyceride accumulation, we studied the expression of proteins and mRNAs related to lipidogenesis in hepatoma cells (Huh7 and HepG2). JRG decreases the lipidogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding proteins α (C/EBPα) and C/EBPβ which are major regulators of triglyceride synthesis in hepatoma cells. We also found that JRG reduced sterol regulatory element binding proteins 1c (SREBP-1c), C/EBPα and C/EBPβ by regulating liver X receptor (LXR) and stearoyl CoA desaturase (SCD) expressions. In addition, the first-limited step of synthesis triglyceride (TG), glycerol-3-phosphate (G3P) is decreased by JRG. These results suggest that the anti-hypertriglyceride effect of JRG in hepatoma cells could be accompanied with the inhibition of lipidogenic transcription factors by regulating LXR and SCD expression.

Extract of Ranunculus sceleratus Reduced Adipogenesis by Inhibiting AMPK Pathway in 3T3-L1 Preadipocytes (3T3-L1 전구지방세포에서 개구리자리(Ranunculus sceleratus) 추출물의 AMPK 신호전달을 통한 지방생성 억제 효과)

  • Kim, Yae-Ji;Cho, Sung-Pil;Lee, Hui-Ju;Hong, Geum-Lan;Kim, Kyung-Hyun;Ryu, Si-Yun;Jung, Ju-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2022
  • Objectives: Adipogenesis is the process by which pre-adipocytes are differentiated into adipocytes. It also plays an important role in adipocyte formation and lipid accumulation. Ranunculus sceleratus (R. sceleratus) extracts are used for the treatment of various diseases such as hepatitis, jaundice, and tuberous lymphadenitis in oriental medicine. However, its effect on adipogenesis has not yet been studied. In this study, we investigated the effects of R. sceleratus on adipogenesis in 3T3-L1 cells. Methods: Cells were treated with 50, 100, and 200 ㎍/ml of R. sceleratus and cell viability was evaluated. To differentiate the 3T3-L1 preadipocytes, a 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI) solution were used. The accumulation of lipid droplets was determined by Oil Red O staining. The expression levels of adipogenesis-related proteins were also determined. Results: MDI solution differentiated the preadipocytes into adipocytes and accumulation of lipids was observed in the differentiated 3T3-L1 cells. Interestingly, the amount of lipid droplets was reduced after R. sceleratus treatment. In addition, the expression levels of key adipogenic transcription factors, such as CCAAT/enhancer-binding proteins-𝛼 (C/EBP-𝛼) and peroxisome proliferator-activated receptors-𝛾 (PPAR-𝛾) were also reduced after R. sceleratus treatment. Furthermore, R. sceleratus increased AMP-activated kinase (AMPK) phosphorylation and decreased sterol regulatory element-binding protein-1 expression. Conclusions: Our results showed that R. sceleratus reduced preadipocyte differentiation by inhibiting C/EBP-𝛼 and PPAR-𝛾 levels via the AMPK pathway. Therefore, we suggest that R. sceleratus may be potentially used as an anti-adipogenic agent.

Inhibitory Effect of the Ethanol Extract of Torilis Japonica Decandolle on Adipocyte Differentiation in 3T3-L1 Cells (사상자 에탄올 추출물의 지방세포 분화 억제 효과)

  • Nam, Gun He;Wee, Ji-Hyang;Kim, Sang Yung;Baek, Ji-Young;Kim, Young Min
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1016-1022
    • /
    • 2019
  • Owing to increased interest in preventing obesity in an aging society, both men and women spend considerable amount of cost on obesity managements. In this study, we investigated the natural substances on anti-obesity activities in 3T3-L1 pre-adipocytes. Also, to improve anti-obesityeffects, research using 3T3-L1 pre-adipocytes cells is crucial. The anti-obesity effect of 70% ethanol extract from Torilis Japonica Decandolle on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil Red O assay, and western blot analysis. Compared to the control, 70% ethanol extract of Torilis Japonica Decandolle was significantly inhibited adipocyte differentiation and intracellular triglyceride (TG) level at a concentration of $100{\mu}g/ml$. To determine the mechanism of reduction in TG content, we determined the level of protein expression of obesity-related proteins, such as peroxisome-proliferatorsactivated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins-${\alpha}$ ($C/EBP{\alpha}$), and Acetyl-CoA carboxylase (ACC) phosphorylation. As a results, 70% ethanol extract of Torilis Japonica Decandolle significantly decreased protein expression of $PPAR{\gamma}$, $C/EBP{\alpha}$ and ACC phosphorylation. These results indicate that 70% ethanol extract of Torilis Japonica Decandolle is the most effective candidate for preventing obesity. However further studies will be needed to identify the active compounds that confer the anti-obesity activity of Torilis Japonica Decandolle.

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Anti-obesity effects of an enzymatic extract of mandarin (Citrus unshiu) peel in 3T3-L1 adipocytes (감귤피 효소적 추출물의 지방세포에서의 항비만 효과)

  • Jang, Yebin;Kang, Heejoo;Kim, Jusang;Lee, Seung-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.149-153
    • /
    • 2021
  • Mandarin peel (MP) is a by-product of the processing of citrus juice or other products. This study aimed to investigate the potential anti-obesity effect of an enzymatic extract of MP on the inhibition of adipogenesis in 3T3-L1 adipocytes. The enzymatic extract (MPCE) was prepared using the commercial food-grade carbohydrase Celluclast. Lipid accumulation and triglyceride levels were significantly lower in MPCE-treated cells than in untreated cells. In addition, MPCE treatment reduced the protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α, sterol regulatory element-binding protein 1, and fatty acid-binding protein 4. These results suggest that MPCE inhibits adipogenesis by downregulating the expression levels of adipogenesis-related proteins. Therefore, the current findings demonstrate that MPCE possesses potent anti-obesity properties and could be a potential ingredient in functional food industries.